
Intro to Programming, Part 1
Richard Kelley

AI 109

Why Programming in an AI Course?

• AI systems do not replace programs
• Models run inside code
• Programming is how we:
• Express ideas precisely
• Automate reasoning
• Control AI systems

• Today: first contact, not mastery

What Is a Program?

• A program is a set of precise instructions
• Computers are:
• Fast
• Literal
• Unforgiving of ambiguity

• Same input -> same output
• No “understanding,” only execution

The Programming Environment

• Programs can run in different environments
• Common forms:
• GUI programs (desktop and mobile apps)

• Browser programs (web pages and web apps)
• Terminal programs (command line tools, scripts)

• Same core ideas, different ways of interacting with the computer.
• Today we use a browser program to learn.
• The computer language we will use is called JavaScript.
• I’m going to use the Brave browser, but this will also work with Chrome,

Firefox.
• This will also let you start building web programs, which will eventually use AI.

The Browser Console as a Programming
Environment
• The browser includes a built-in programming tool called the console.
• No installation required.
• Immediate feedback.

• This process is repeated until the user quits:
• Type some code.
• Run the code.
• Observe the result.

• The technical terms for these steps are read, evaluate, print.
• The technical term for “repeating” is a loop, so we call the console a

“read-evaluate-print loop” or REPL.

Comments

• We can write notes to ourselves that the computer won’t try to
execute.
• These are called comments.
• In JavaScript there are two kinds:
• Single line comments start with //
• Multi-line comments start with /* and end with */

Expressions and Evaluation

• An expression produces a value.
• The computer evaluates expressions to produce values.
• Examples:
• Arithmetic: The expression 1 + 1 evaluates to the value 2.
• “Logic” tests

• && means “and”.
• So the expression true && false evaluates to false.

• Text manipulation
• The expression “Hello, ” + “world!” evaluates to “Hello, world!”

• The console shows results directly.

Values Have Types

• Different kinds of values:
• Numbers
• Text (strings)
• True / false (booleans)

• The computer treats them differently
• Type errors are common — and informative.
• What should be the value of the expression 1 + “Hello!” ?
• What is it?

Types of Expressions

• Arithmetic Expressions
• These evaluate to numbers.

• Boolean Expressions
• These evaluate to true or false.

• String expressions
• These evaluate to strings – which are pieces of text.

• And more…

Arithmetic Expressions

• Addition
• 5 + 4

• Subtraction
• 5 - 3

• Multiplication
• 5 * 3

• Division
• 6 / 2

• Modulo (remainder).
• 5 % 2 (which is 1).

Simple Boolean Expressions

• And

• Or

Expression Value

true && true true

true && false false

false && true false

false && false false

Expression Value

true || true true

true || false true

false || true true

false || false false

Other Boolean Expressions

• Strict Inequalities
• 1 < 4
• 1 > 4
• 1 < 1

• “Weak” Inequalities (“less than or equal”)
• 1 <= 5
• 1 <= 1

• Equality
• 1 === 2
• true === false

Expressions vs. Statements

• Some code produces values.
• Code that produces a value is an expression.

• Other code performs actions.
• Code that performs an action is called a statement.

• Understanding this explains console behavior.
• This distinction appears in all languages.
• In JavaScript, it is typical (and recommended) to end simple statements with a
semicolon.
• But we don’t put a semicolon after curly braces.

Variables: Naming State

• Variables store values (they are like boxes for data).
• Variables have names
• Always start with a letter.
• May otherwise contain letters, numbers, underscores.

• Assignment changes state over time
• Assignment is a statement not an expression.

• Key distinction:
• Assignment ≠ equality. Equals sign is deceptive.

• Programs execute top to bottom.

let x = 5;

x = 6;

Two Powerful Ideas

• Computers are dumb – at the lowest level they only follow rules
encoded by computer programs.
• But they have two abilities that make them powerful:
• Conditionals allow programs to “make decisions”
• Loops allow programs to perform actions repeatedly.

• Because computers are so fast, conditionals and loops can let them
do amazing things.

Conditionals: Making Decisions

• Programs can branch
• if / else statement chooses between options
• Decisions are based on boolean expressions
• This is how programs “decide”
• No understanding — just rules.
• The two branches of the statement are wrapped in curly braces.
• We call them the if branch and the else branch.

if (<condition>) {
 console.log(“true”);
} else {
 console.log(“false”);
}

Loops: Repetition at Scale

• Computers excel at repetition
• Loops automate repeated work
• Loop variables change over time
• for loops are a kind of statement.

for (let i = 0; i < 5; i = i + 1) {
 console.log(i);
}

For Loops

• Parts of a loop
• The keyword “for”
• Parentheses

• Code that runs once at the start of the loop
• A test that is run at the end of every loop iteration
• Code that runs after every test (usually to update something)

• The body of the loop, surrounded by braces.

for (let i = 0; i < 5; i = i + 1) {
 console.log(i);
}

• Arrays store multiple values
• Ordered, indexed collections
• Starting from 0.

• Core operations:
• Access
• Length
• Iteration

• This is the foundation of data processing

Arrays: Collections of Data

let arr = [1,2,3];

arr[0]

arr.length

Functions: Abstraction

• Functions package behavior
• Inputs -> outputs
• Functions let us:
• Reuse logic
• Hide details
• Think at a higher level

• Black-box thinking is essential

function square(x) {
 return x * x;
}

Functions

• Functions have
• A name
• A set of arguments
• A body

• Functions may have outputs.
• The keyword return indicates an output.

function square(x) {
 return x * x;
}

Functions Have Contracts

• Functions expect certain inputs
• Incorrect inputs lead to errors or nonsense
• The computer does not “guess intent”
• This is why precision matters
• Reading function behavior is a skill

Errors Are Normal

• Syntax errors: code is malformed
• Runtime errors: something went wrong during execution
• Logic errors: code runs but is wrong
• Debugging is:
• Reading code
• Testing code
• Thinking about

• Humans write broken code
• Mariner 1 Spacecraft, 1962 (missing hyphen, $192 million)
• Pentium FDIV bug, 1994 (incorrect division operator, $1.1 billion)

What Programming Is Not

• Not memorizing syntax
• Not typing speed
• Not innate talent
• Not math-only
• It is structured thinking made executable

How This Fits the Course

• Programming enables:
• Search
• Machine learning pipelines
• AI agents

• We start small
• Complexity builds gradually
• The skills compound

What Comes Next

• More practice with code
• More structure
• Data and algorithms
• Using AI tools with understanding
• You are not expected to be fluent yet

If you’re curious to learn more…

https://developer.mozilla.org/en-
US/docs/Learn_web_development/Getting_started/Your_first_website

https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Your_first_website
https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Your_first_website
https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Your_first_website

