Intro to Programming, Part 1

Richard Kelley
Al 109

Why Programming in an Al Course?

* Al systems do not replace programs
* Models run inside code

* Programming is how we:
* Express ideas precisely
* Automate reasoning
e Control Al systems

 Today: first contact, not mastery

What Is a Program?

* A program is a set of precise instructions

* Computers are:
* Fast
e Literal
* Unforgiving of ambiguity

* Same input -> same output
* No “understanding,” only execution

The Programming Environment

* Programs can run in different environments

* Common forms:
e GUI programs (desktop and mobile apps)

* Browser programs (web pages and web apps)
e Terminal programs (command line tools, scripts)

e Same core ideas, different ways of interacting with the computer.

* Today we use a browser program to learn.
* The computer language we will use is called JavaScript.

* I'm going to use the Brave browser, but this will also work with Chrome,
Firefox.

* This will also let you start building web programs, which will eventually use Al.

The Browser Console as a Programming
Environment

* The browser includes a built-in programming tool called the console.
* No installation required.
* Immediate feedback.

* This process is repeated until the user quits:
* Type some code.
* Run the code.
* Observe the result.

* The technical terms for these steps are read, evaluate, print.

* The technical term for “repeating” is a loop, so we call the console a
“read-evaluate-print loop” or REPL.

Comments

* We can write notes to ourselves that the computer won’t try to
execute.

* These are called comments.

* In JavaScript there are two kinds:

* Single line comments start with //
* Multi-line comments start with /* and end with */

Expressions and Evaluation

* An expression produces a value.
* The computer evaluates expressions to produce values.

* Examples:
* Arithmetic: The expression[l + 1]evaluates to the value 2|

* “Logic” tests

* && means “and”.
* So the expression|jtrue && false|evaluates to false|.

e Text manipulation
* The expression|“Hello, ” + “world

* The console shows results directly.

I”levaluates to|“Hello, world!”

Values Have Types

* Different kinds of values:
* Numbers
» Text (strings)
* True / false (booleans)

* The computer treats them differently
* Type errors are common — and informative.

* What should be the value of the expression|1 + “Hello!”| -

e What is it?

Types of Expressions

* Arithmetic Expressions
e These evaluate to numbers.

* Boolean Expressions
* These evaluate to true or false.

* String expressions
* These evaluate to strings — which are pieces of text.

e And more...

Arithmetic Expressions

e Addition
*5+4

e Subtraction
*5-3
* Multiplication
e5*3
* Division
*6/2
* Modulo (remainder).
* 5% 2 (whichis 1).

Simple Boolean Expressions

Expression Value
* And true && true true
true && false false
false && true false
false && false false
bpresson lvawe
* Or true || true true
true || false true
false || true true

false | | false false

Other Boolean Expressions

e Strict Inequalities
¢ 1<4
e 1>4
¢ 1<1

e “Weak” Inequalities (“less than or equal”)
* 1<=5

e 1<=1
* Equality
o 1:::

e true === false

Expressions vs. Statements

 Some code produces values.
* Code that produces a value is an expression.

e Other code performs actions.
* Code that performs an action is called a statement.

* Understanding this explains console behavior.

* This distinction appears in all languages.
* In JavaScript, it is typical (and recommended) to end simple statements with a
semicolon.
* But we don’t put a semicolon after curly braces.

Variables: Naming State

 Variables store values (they are like boxes for data).

e Variables have names
* Always start with a letter.
* May otherwise contain letters, numbers, underscores.

* Assignment changes state over time
* Assignment is a statement not an expression. x = 6;

 Key distinction:
* Assignment # equality. Equals sign is deceptive.

* Programs execute top to bottom.

let x

5;

Two Powerful |deas

* Computers are dumb — at the lowest level they only follow rules
encoded by computer programs.

e But they have two abilities that make them powerful:
e Conditionals allow programs to “make decisions”
* Loops allow programs to perform actions repeatedly.

* Because computers are so fast, conditionals and loops can let them
do amazing things.

Conditionals: Making Decisions

1f (<condition>) {
* Programs can branch console.log (“true”);
} else {

* if / else statement chooses between options
console.log (Vfalse”);

* Decisions are based on boolean expressions
* This is how programs “decide”
* No understanding — just rules.

* The two branches of the statement are wrapped in curly braces.
* We call them the if branch and the else branch.

Loops: Repetition at Scale

* Computers excel at repetition

* Loops automate repeated work

* Loop variables change over time
* for loops are a kind of statement.

for (let 1 = 0; 1 < 5; 1 =1 + 1) {
console.log (1) ;

For Loops

 Parts of a loop
* The keyword “for”

e Parentheses
* Code that runs once at the start of the loop
* Atest thatis run at the end of every loop iteration
* Code that runs after every test (usually to update something)

* The body of the loop, surrounded by braces.

for (let 1 = 0; 1 < 5; 1 =1 + 1) {
console.log (1) ;

Arrays: Collections of Data

* Arrays store multiple values let arr = [1,2,3];
’ 4 ’

* Ordered, indexed collections
 Starting from O.

* Core operations:
* Access arr[0]
* Length arr.length
* Iteration

* This is the foundation of data processing

Functions: Abstraction

function square (x) {
return x * x;

* Functions package behavior
* Inputs -> outputs)

 Functions let us:

* Reuse logic
* Hide details
* Think at a higher level

* Black-box thinking is essential

Functions

function square (x) {

* Functions have return x * x:
1 4

* A name

* A set of arguments
* A body

* Functions may have outputs.
* The keyword return indicates an output.

Functions Have Contracts

* Functions expect certain inputs

* Incorrect inputs lead to errors or nonsense
* The computer does not “guess intent”

* This is why precision matters

* Reading function behavior is a skill

Errors Are Normal

* Syntax errors: code is malformed
* Runtime errors: something went wrong during execution

* Logic errors: code runs but is wrong

* Debugging is:
* Reading code
* Testing code
* Thinking about

* Humans write broken code
* Mariner 1 Spacecraft, 1962 (missing hyphen, $192 million)
* Pentium FDIV bug, 1994 (incorrect division operator, $1.1 billion)

What Programming |s Not

* Not memorizing syntax

* Not typing speed

* Not innate talent

* Not math-only

* It is structured thinking made executable

How This Fits the Course

* Programming enables:

e Search
* Machine learning pipelines
* Al agents

* We start small
* Complexity builds gradually
* The skills compound

What Comes Next

* More practice with code

* More structure

e Data and algorithms

* Using Al tools with understanding

* You are not expected to be fluent yet

If you're curious to learn more...

https://developer.mozilla.org/en-
US/docs/Learn web development/Getting started/Your first website

https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Your_first_website
https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Your_first_website
https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Your_first_website

