Al-Assisted Programming

Al 109
Richard Kelley

Last Time

* Nuts and bolts of computer programs.
e Simple examples of code.
* This level of detail is getting (relatively) less important.

e “Coding in the small”

Today

* How to convert ideas into code: design and architecture.
* An overview of the general process of creating software

e “Coding in the large”

Next time

* Project 1 goes out
* Create a GitHub account.
* Create a public website.
 Start creating programs for your site (a portfolio).

* Small quiz at the end of class.
* The steps of the software development life cycle (covered today).

Abstraction

* “Computer Science is a science of abstraction - creating the right model for
a problem and devising the appropriate mechanizable techniques to solve
it.”

e Alfred Aho

* “People who discover the power and beauty of high-level, abstract ideas
often make the mistake of believing that concrete ideas at lower levels are
worthless and might as well be forgotten. On the contrary, the best
computer scientists are thoroughly grounded in basic concepts of how
computers actually work. The essence of computer science is an ability to
understand many levels of abstraction simultaneously.”

e Donald Knuth

Making software is hard

* We saw last time programming languages have lots of parts.

* Writing a program requires knowing those parts and how they fit
together.

* Just like expressing yourself in Latin requires that you know Latin grammar
and vocabulary.

* If you make any mistakes, your program breaks.
* Computers are unforgiving.

* How do we make software when it seems so hard?

Process

The Software Development
Lifecycle

The Software Development Lifecycle

* Requirements & Problem Definition
* Design & Planning
* Implementation (Coding)

 Testing & Verification SDLC

Software/System Development

Life Cycle - SDLC

* Deployment & Release
 Maintenance & Evolution

https://commons.wikimedia.org/wiki/File:SDLC - Software Development Life Cycle.ipg

https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

Requirements & Problem Definition

* |dentify
* The problem to be solved,
e Stakeholders,
e Constraints, and
* Success criteria

* Clarify

 What the software should do and
 Why.

Desigh & Planning

* Translate requirements into
* Architecture,
 Data models,
* Interfaces, and
* A development plan.

e Decide how the system will be built.

Implementation (Coding)

* Write the source code
e according to the design,
* using appropriate languages, frameworks, and tools.

Testing & Verification

* Check that the software

* Behaves correctly and
* Meets requirements

* Using
* Unit tests,
* Integration tests, and
* System testing.

Deployment & Release

* Package and deliver the software to users or production
environments.

 configure infrastructure and dependencies.

Maintenance & Evolution

* Fix bugs,

* Improve performance,

e Add features, and

* Adapt the software as requirements or environments change.

Software Development Lifecycle*

SDLC

Software/System Development

Life Cycle - SDLC

*About half the written
resources say “lifecycle”
and half say “life cycle”. It
doesn’t matter which you
use, just be consistent.

https://commons.wikimedia.org/wiki/File:SDLC - Software Development Life Cycle.ipg

https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg
https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

Demonstration

A Common Model: Graphs

* A graph is a fundamental concept in programming.
* Graphs are everywhere.
e BUT

* Not talking about “graphs” like you may have seen in algebra.
* Context always makes this clear.

* If you can express a problem in terms of graphs, you can (probably)
solve it.

Graphs

* A Graph is a pair of Two things

* Nodes — think of this as points.
* Nodes may have labels.

* Edges —these are lines that connect nodes.

* Edges may have labels.
* Edges may have weights (hnumbers) attached to them.

* Another (informal) name for a graph is a network.

* Graphs are useful any time you want to talk about relationships
between things.

* Many Al algorithms are described in terms of graphs.
* The theoretical study of graphs is called graph theory.

Examples of Graphs

* Road/sidewalk networks

* The World Wide Web

* Social Networks

* Power grid

* Airline route map

* Concept similarity graph

* Document similarity network

. |
3N AVOY JOVINIODIDIN NHOI

Maps

0
-
Q.
(O
—
oo
Q
Nl
qu)

A Common Problem: Routing

* How do | get from Point A to Point B?

 Called “routing” or “path finding” or
“path planning” depending on the
context.

* Basic question: can | get from point A
to point B?

* Variation: What’s the best way to get
from point A to point B?

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

The Problem

| want the user to be able to take an image (a map) and
* Create a graph on top of the image.
e Save and load the graph (and the map).
* Query the graph to find routes between points.

e But first we need a bit more clarity on: how do we work with an Al?

How do we communicate with an Al?

* On the web, we can just type questions and get answers.

* In an app (like Cursor), we can make the Al write its thoughts down in
files, so that it can refer to them later.

* We can give instructions to the Al to refer to files before it changes
anything.

* The predominant format for these files is a popular format called
markdown.

Markdown

* Plain-text markup language

e |t lets authors add structure
* headings
* |ists
* links
* code blocks and
* emphasis

* Easy to write and edit without special tools
* Files typically end in “.md”

Markdown

Section headings

Heading 1
Heading 2
Heading 3

Emphasis (formatting)

italic _italic
pold __bold
~~strikethrough~~

Numbered lists Bulleted lists
1. first ~ item
2. second ~ item
— subitem

Hyperlinks

[1ink text] (https://example.com)

Markdown

Block quoted text

> quoted text

Horizontal separator

Inline code

‘code

Block code

" Jjavascript
code block

Tables

| A | B |
| ——=——-]
1 | 2 |

The Software Development Lifecycle

* Requirements & Problem Definition
* Design & Planning

* Implementation (Coding)

* Testing & Verification

* Deployment & Release
M o Euoluti

