Version Control & Git

Al109



The Problem We're Solving

* You edit files over time

* You make mistakes

* You want to undo changes

* You want proof of progress

* You want to try ideas without breaking things



Life Without Version Control

* Files named:
e final.docx

* final_v2.docx
 final REAL final.docx

* No clear history
* Hard to go back
* Easy to lose work



What Is Version Control?

* A system for tracking changes to files
* Records what changed and when
* Lets you move backward and forward in time

* Works for code, text, and data



Why Version Control Matters

* Protects your work
* Encourages experimentation
* Makes collaboration possible

* Creates a visible history of progress



Version Control as a Time Machine

* Every saved version is remembered
* You can compare any two points in time
* You can recover deleted or broken work

* Nothing is truly “lost”



Individual vs Shared Version Control

* Personal history (your own work)

» Shared history (working with others)

* Multiple people, one project

* Changes are coordinated, not overwritten



Tools That Do Version Control

* Many systems exist

* Some are simple, some very powerful
* Today’s focus:

* Git as the tool

* VS Code as the interface



What You’ll Learn Today

* The idea behind version control
* How Git implements it
* How to use Git safely through a GUI

* How this fits into your class workflow



What Git Is (and Is Not)

* A system for tracking changes to files over time
* Lets you save versions of your work

* Helps you recover from mistakes

* Not a backup service by itself

* Not the same thing as GitHub



Git vs GitHub

e Git: runs on your computer

* GitHub: a website that stores Git repositories
* You can use Git without GitHub

VS Code connects Git and GitHub for you



Repositories

* A repository = a project with history
* Contains files and their change history
e Usually just a normal folder with Git enabled

* VS Code detects repositories automatically



The Git Mental Model

* Working directory: your files right now
 Staging area: changes you are about to save
* Repository: saved history

* Changes move step-by-step through these stages



Using Git in VS Code

* Source Control panel

* File status indicators in the editor
* Visual cues instead of commands
* Most actions are button-based



Tracking Changes

e Files start as untracked
e Edited files become modified
* You choose which files to stage

* Staging prepares changes for a commit



Commits

A commit is a snapshot of changes

* Includes:

* Files you staged

* A commit message

* Commit messages explain why, not just what



Good Commit Habits

* Commit small, logical changes
* Write clear messages
 Commit often

* Commits help you and your instructor understand progress



Branches (Big Idea)

* A branch is a separate line of work
* Lets you experiment safely

* Main branch holds stable code

* VS Code shows your current branch



Working with Branches in the GUI

* Create a branch with a click
e Switch branches visually

* Merge branches when ready
* No typing required



Remotes

* Aremote is a copy stored elsewhere
e Usually on GitHub
» Keeps work safe and shareable

* VVS Code shows sync status



Cloning and Syncing

* Clone: download a repository
* Push: send your commits
* Pull: get new commits

* Sync buttons combine steps



GitHub in VS Code

* Sign in once
* Publish repositories easily
* View commits online

* Used for submissions and collaboration



Reading History

* View commit list in VS Code

* See who changed what and when
 Compare versions of a file

e Useful for debugging and grading



Understanding Diffs

* Green lines: additions

* Red lines: deletions

* Side-by-side comparisons

* Shows exactly what changed



Making Mistakes Safely

* Discard uncommitted changes
* Revert a commit

* Git remembers your past work
* Most mistakes are recoverable



When to Ask for Help

* Merge conflicts you don’t understand
* Changes disappeared unexpectedly
* Unsure what a button will do

* Asking early prevents bigger problems



Git Etiquette for Class

* Do your own commits
* Don’t share private repositories unless told to
* Never commit passwords or keys

* Git is part of your workflow, not just submission



What the GUI Is Doing for You

* Buttons map to Git commands
* VS Code hides complexity at first
* Understanding this later gives you more control

* Terminal Git is optional, not required now



Big Picture

* Git helps you work confidently

* You can experiment without fear

* Your project has a visible history

* Git is a professional skill you are learning early



