
Version Control & Git
AI109



The Problem We’re Solving

• You edit files over time
• You make mistakes
• You want to undo changes
• You want proof of progress
• You want to try ideas without breaking things



Life Without Version Control

• Files named:
• final.docx
• final_v2.docx
• final_REAL_final.docx

• No clear history
• Hard to go back
• Easy to lose work



What Is Version Control?

• A system for tracking changes to files
• Records what changed and when
• Lets you move backward and forward in time
• Works for code, text, and data



Why Version Control Matters

• Protects your work
• Encourages experimentation
• Makes collaboration possible
• Creates a visible history of progress



Version Control as a Time Machine

• Every saved version is remembered
• You can compare any two points in time
• You can recover deleted or broken work
• Nothing is truly “lost”



Individual vs Shared Version Control

• Personal history (your own work)
• Shared history (working with others)
• Multiple people, one project
• Changes are coordinated, not overwritten



Tools That Do Version Control

• Many systems exist
• Some are simple, some very powerful
• Today’s focus:
• Git as the tool
• VS Code as the interface



What You’ll Learn Today

• The idea behind version control
• How Git implements it
• How to use Git safely through a GUI
• How this fits into your class workflow



What Git Is (and Is Not)

• A system for tracking changes to files over time
• Lets you save versions of your work
• Helps you recover from mistakes
• Not a backup service by itself
• Not the same thing as GitHub



Git vs GitHub

• Git: runs on your computer
• GitHub: a website that stores Git repositories
• You can use Git without GitHub
• VS Code connects Git and GitHub for you



Repositories

• A repository = a project with history
• Contains files and their change history
• Usually just a normal folder with Git enabled
• VS Code detects repositories automatically



The Git Mental Model

• Working directory: your files right now
• Staging area: changes you are about to save
• Repository: saved history
• Changes move step-by-step through these stages



Using Git in VS Code

• Source Control panel
• File status indicators in the editor
• Visual cues instead of commands
• Most actions are button-based



Tracking Changes

• Files start as untracked
• Edited files become modified
• You choose which files to stage
• Staging prepares changes for a commit



Commits

• A commit is a snapshot of changes
• Includes:
• Files you staged
• A commit message
• Commit messages explain why, not just what



Good Commit Habits

• Commit small, logical changes
• Write clear messages
• Commit often
• Commits help you and your instructor understand progress



Branches (Big Idea)

• A branch is a separate line of work
• Lets you experiment safely
• Main branch holds stable code
• VS Code shows your current branch



Working with Branches in the GUI

• Create a branch with a click
• Switch branches visually
• Merge branches when ready
• No typing required



Remotes

• A remote is a copy stored elsewhere
• Usually on GitHub
• Keeps work safe and shareable
• VS Code shows sync status



Cloning and Syncing

• Clone: download a repository
• Push: send your commits
• Pull: get new commits
• Sync buttons combine steps



GitHub in VS Code

• Sign in once
• Publish repositories easily
• View commits online
• Used for submissions and collaboration



Reading History

• View commit list in VS Code
• See who changed what and when
• Compare versions of a file
• Useful for debugging and grading



Understanding Diffs

• Green lines: additions
• Red lines: deletions
• Side-by-side comparisons
• Shows exactly what changed



Making Mistakes Safely

• Discard uncommitted changes
• Revert a commit
• Git remembers your past work
• Most mistakes are recoverable



When to Ask for Help

• Merge conflicts you don’t understand
• Changes disappeared unexpectedly
• Unsure what a button will do
• Asking early prevents bigger problems



Git Etiquette for Class

• Do your own commits
• Don’t share private repositories unless told to
• Never commit passwords or keys
• Git is part of your workflow, not just submission



What the GUI Is Doing for You

• Buttons map to Git commands
• VS Code hides complexity at first
• Understanding this later gives you more control
• Terminal Git is optional, not required now



Big Picture

• Git helps you work confidently
• You can experiment without fear
• Your project has a visible history
• Git is a professional skill you are learning early


