

Brute-Force Algorithms

CSC 411

Richard Kelley

Brute-Force String Matching

- pattern: a string of m characters to search for
- text: a (longer) string of n characters to search in
- **problem**: find a substring in the text that matches the pattern
- Examples of Brute-Force String Matching:
 1. Pattern: 001011
Text: 10010101101001100101111010
 2. Pattern: happy
Text: It is never too late to have a happy childhood.

Brute-Force String Matching

- *pattern*: a string of m characters to search for
- *text*: a (longer) string of n characters to search in
- **problem**: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, **compare** each character of pattern to the corresponding character in text until

- all characters are found to match (successful search); or
- a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted, realign pattern **one position to the right** and repeat Step 2

Pseudocode and Efficiency

ALGORITHM *BruteForceStringMatch($T[0..n - 1]$, $P[0..m - 1]$)*

```
//Implements brute-force string matching
//Input: An array  $T[0..n - 1]$  of  $n$  characters representing a text and
//       an array  $P[0..m - 1]$  of  $m$  characters representing a pattern
//Output: The index of the first character in the text that starts a
//       matching substring or  $-1$  if the search is unsuccessful
for  $i \leftarrow 0$  to  $n - m$  do
     $j \leftarrow 0$ 
    while  $j < m$  and  $P[j] = T[i + j]$  do
         $j \leftarrow j + 1$ 
    if  $j = m$  return  $i$ 
return  $-1$ 
```

Pseudocode and Efficiency

ALGORITHM *BruteForceStringMatch($T[0..n - 1]$, $P[0..m - 1]$)*

```
//Implements brute-force string matching
//Input: An array  $T[0..n - 1]$  of  $n$  characters representing a text and
//       an array  $P[0..m - 1]$  of  $m$  characters representing a pattern
//Output: The index of the first character in the text that starts a
//       matching substring or  $-1$  if the search is unsuccessful
for  $i \leftarrow 0$  to  $n - m$  do
     $j \leftarrow 0$ 
    while  $j < m$  and  $P[j] = T[i + j]$  do
         $j \leftarrow j + 1$ 
    if  $j = m$  return  $i$ 
return  $-1$ 
```

Efficiency: $O(mn)$

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

at a point $x = x_0$

Brute-force algorithm

```
p ← 0.0
for i ← n downto 0 do
    power ← 1
    for j ← 1 to i do      //compute  $x^i$ 
        power ← power * x0
    p ← p + a[i] * power
```

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

at a point $x = x_0$

Brute-force algorithm

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

at a point $x = x_0$

Brute-force algorithm

```
p ← 0.0
for i ← n downto 0 do
    power ← 1
    for j ← 1 to i do      //compute  $x^i$ 
        power ← power *  $x_0$ 
    p ← p + a[i] * power
```

Efficiency: $O(n^2)$

Polynomial Evaluation: Improvement

Can we do better?

```
p  $\leftarrow$  a[0]
power  $\leftarrow$  1
for i  $\leftarrow$  1 to n do
    power  $\leftarrow$  power * x0
    p  $\leftarrow$  p + a[i] * power
return p
```

Polynomial Evaluation: Improvement

Can we do better?

We can do better by evaluating from right to left:

$$p(x) = a_0 + a_1x^1 + \dots + a_{n-1}x^{n-1} + a_nx^n$$

Better brute-force algorithm

```
p ← a[0]
power ← 1
for i ← 1 to n do
    power ← power * x0
    p ← p + a[i] * power
return p
```

Efficiency:

Polynomial Evaluation: Improvement

Can we do better?

We can do better by evaluating from right to left:

$$p(x) = a_0 + a_1x^1 + \dots + a_{n-1}x^{n-1} + a_nx^n$$

Better brute-force algorithm

```
p ← a[0]
power ← 1
for i ← 1 to n do
    power ← power * x0
    p ← p + a[i] * power
return p
```

Can we do any better?

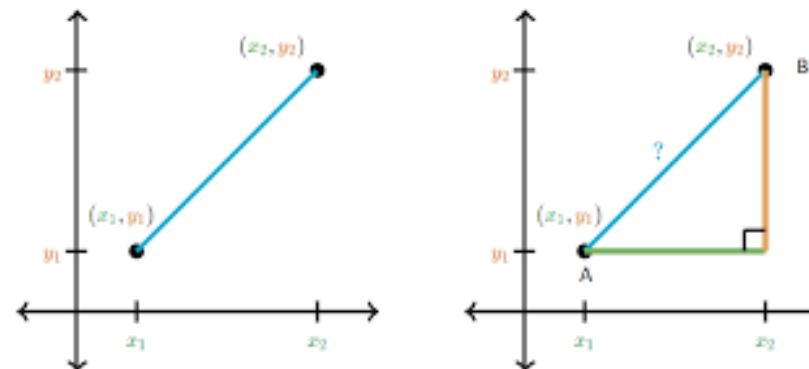
Efficiency: O(*n*)

Closest-Pair Problem

- Find the two closest points in a set of n points (in the two-dimensional Cartesian plane).
- Brute-force algorithm
 - Compute the **distance** between every pair of distinct points and return the indexes of the points for which the distance is the smallest.

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

euclidean vs
manhattan distance



Closest-Pair Brute-Force Algorithm

ALGORITHM *BruteForceClosestPoints(P)*

//Input: A list P of n ($n \geq 2$) points $P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)$

//Output: Indices $index1$ and $index2$ of the closest pair of points

$dmin \leftarrow \infty$

for $i \leftarrow 1$ **to** $n - 1$ **do**

for $j \leftarrow i + 1$ **to** n **do**

$d \leftarrow \text{sqrt}((x_i - x_j)^2 + (y_i - y_j)^2)$ //sqrt is the square root function

if $d < dmin$

$dmin \leftarrow d$; $index1 \leftarrow i$; $index2 \leftarrow j$

return $index1, index2$

Efficiency: $O(n^2)$

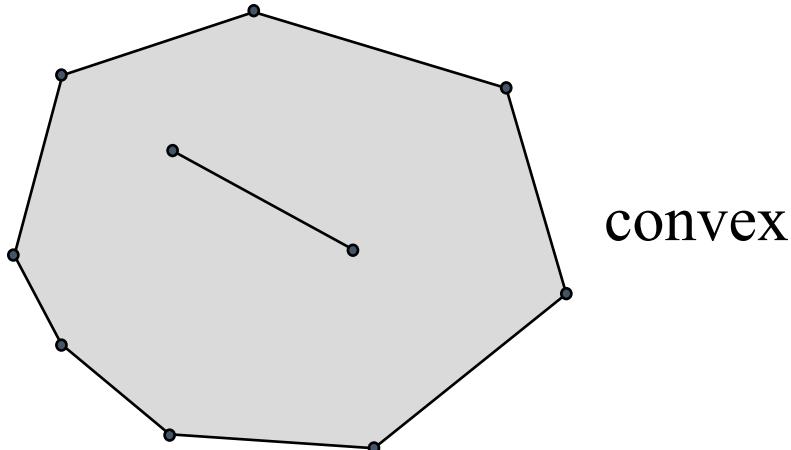
Can you make it faster?

We will find out later...

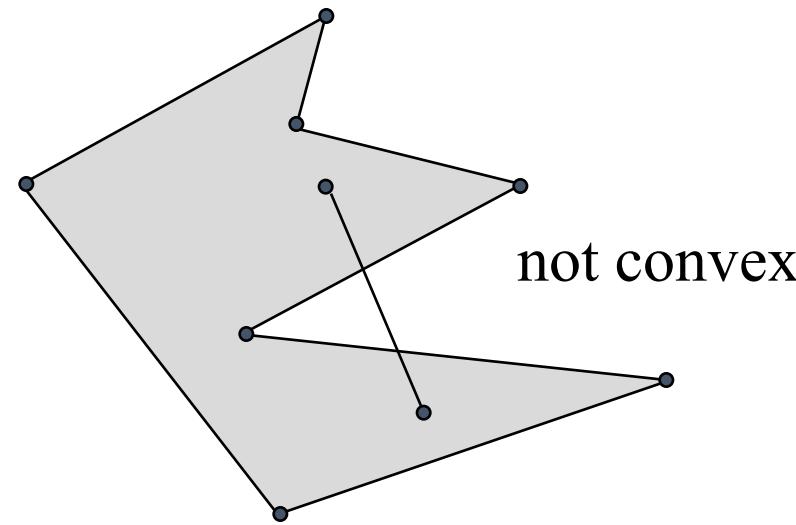
$$\begin{aligned} C(n) &= \sum_{i=1}^{n-1} \sum_{j=i+1}^n 2 = 2 \sum_{i=1}^{n-1} (n - i) \\ &= 2[(n - 1) + (n - 2) + \dots + 1] = (n - 1)n \end{aligned}$$

Convex-Hull Problem

- Definition
 - A set of points (finite or infinite) in the plane is called **convex** if for any two points P and Q in the set, the entire line segment with the endpoints at P and Q belongs to the set

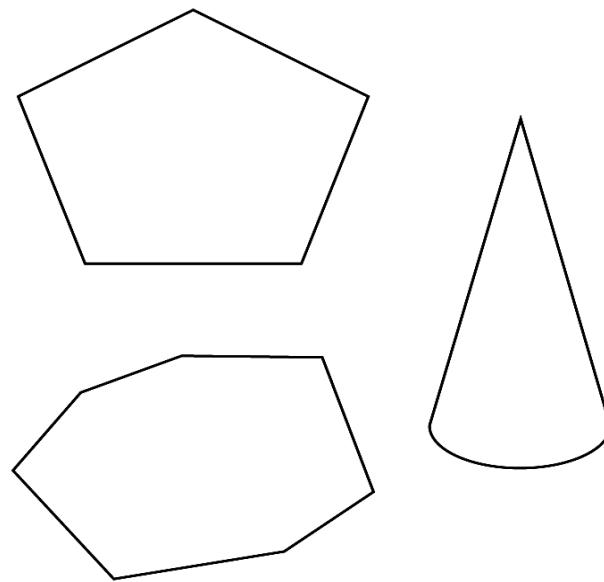


convex

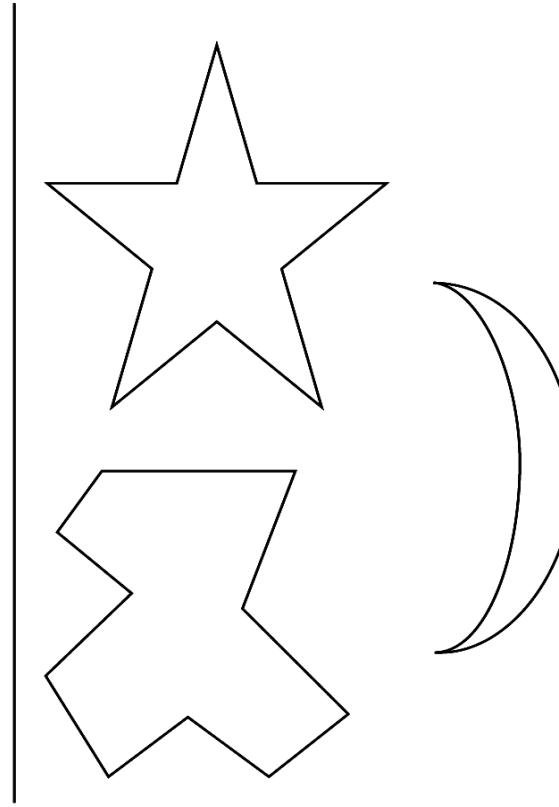


not convex

Examples of Convex Sets



(a)



(b)

FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

Convex-Hull Problem

- Extreme points

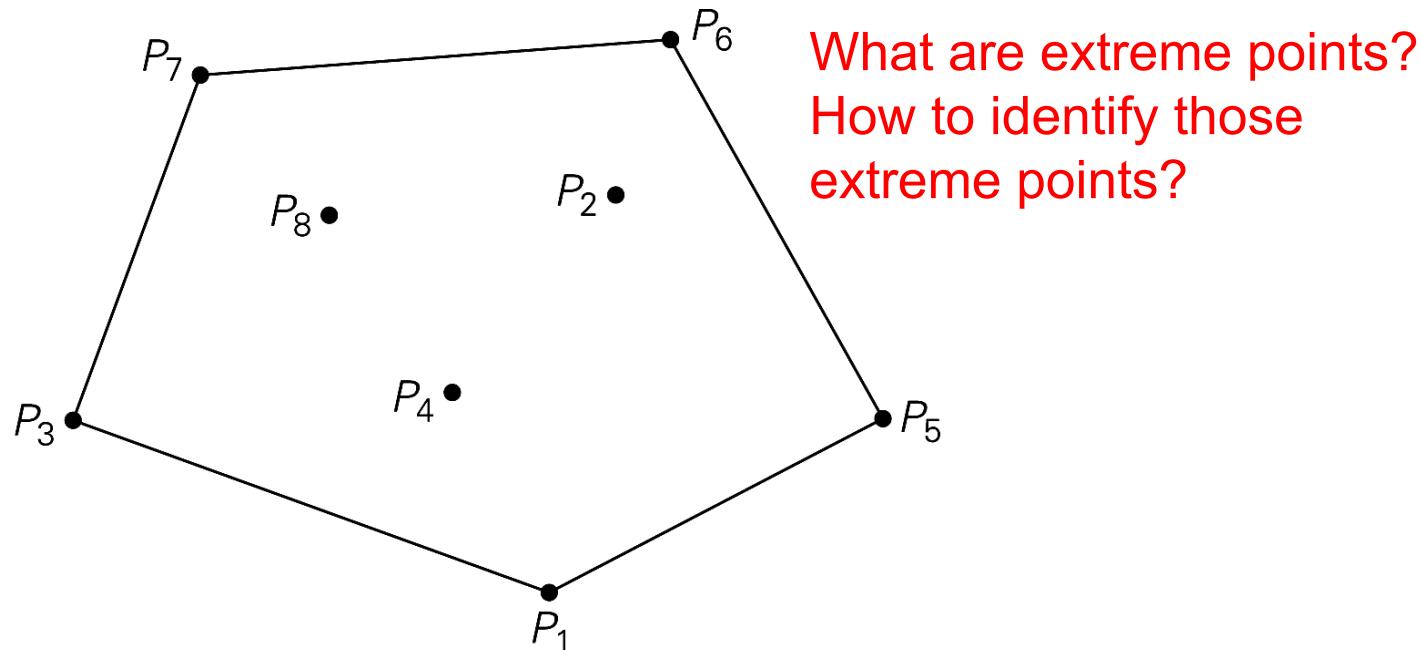
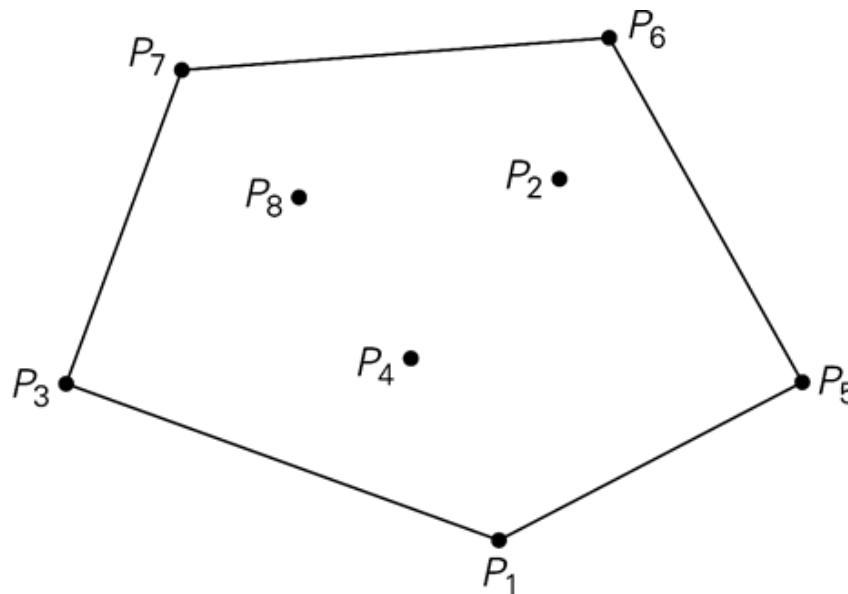


FIGURE 3.6 The convex hull for this set of eight points is the convex polygon with vertices at P_1 , P_5 , P_6 , P_7 , and P_3 .

Convex-Hull Problem

- Brute-Force Convex-Hull Algorithm
- Find the pairs of points (P_i, P_j) from a set of n points
 - The line segment connecting P_i and P_j is a part of its convex hull's boundary if and only if the other points of the set lie **on the same side of the straight line through P_i and P_j**



Convex hull brute force algorithm

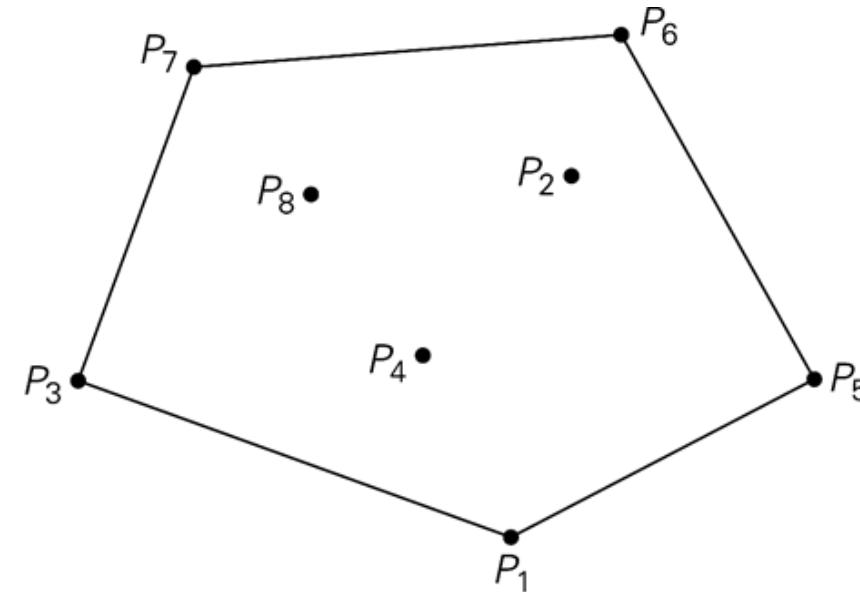
- The straight line through two points $(x_1, y_1), (x_2, y_2)$ in the coordinate plane can be defined by the following equation
 - $ax + by = c$
where $a = y_2 - y_1$, $b = x_1 - x_2$, $c = x_1*y_2 - y_1*x_2$
- Such a line **divides** the plane into two half-planes: for all the points in one of them: $ax + by \geq c$, while for all the points in the other, $ax + by \leq c$.

Convex hull brute force algorithm

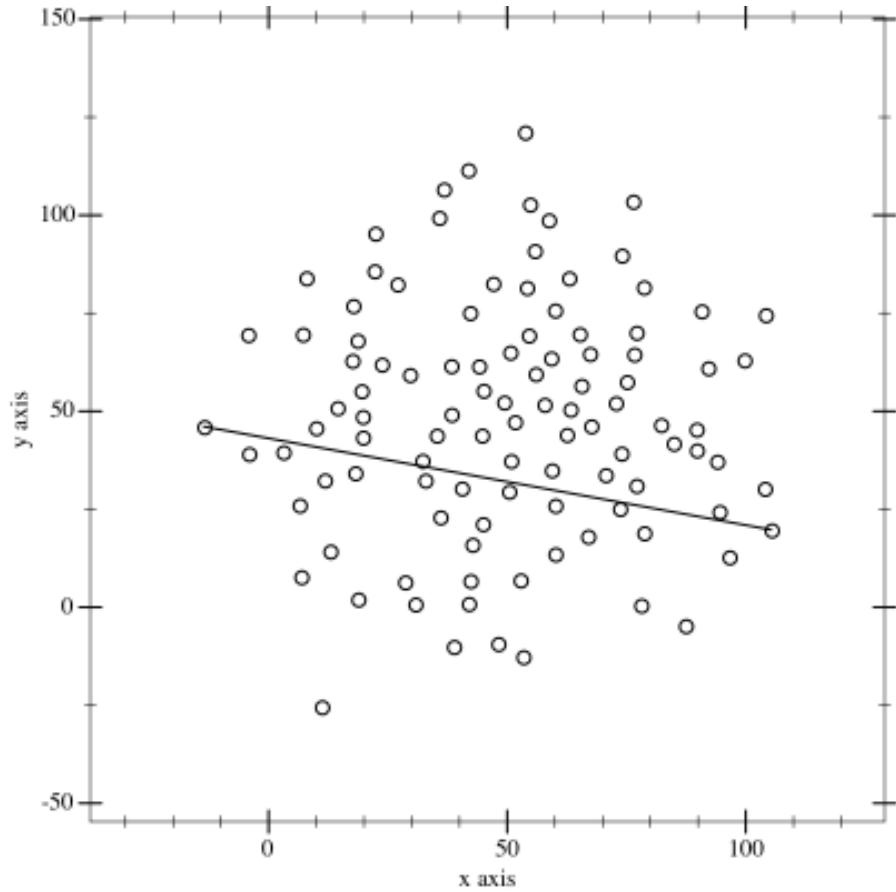
- Algorithm: For each pair of points p_i and p_j determine whether all other points lie to the same side of the straight line through p_i and p_j , i.e. whether $ax+by-c$ all have **the same sign** (no 3+ points are co-linear)

- Efficiency: $\Theta(n^3)$

- Can we do better?
 - Divide-and-conquer
(see quickhull algorithm)



Quickhull



Worst-case quadratic.

For input precision that grows as a function of the number of points n , there was a conjectured worst case that was $n \log h$, where h is the size of the convex hull. This was just disproved in October 2024!

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4989035

Brute-Force Strengths and Weaknesses

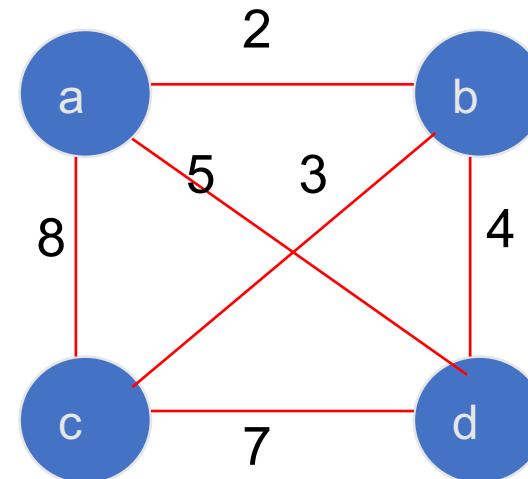
- Strengths
 - wide applicability
 - simplicity
 - yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)
- Weaknesses
 - rarely yields efficient algorithms
 - some brute-force algorithms are unacceptably slow
 - not as constructive as some other design techniques

Exhaustive Search

- A brute force solution to a problem involving **search for an element with a special property**, usually among combinatorial objects such as permutations, combinations, or subsets of a set.
- Method:
 - generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 5.4)
 - evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of **the best one** found so far
 - when search ends, announce the solution(s) found

Example: Traveling Salesman Problem

- Given n cities with known distances between each pair, find the **shortest tour** that passes through all the cities exactly once before returning to the starting city
- Alternatively: Find shortest ***Hamiltonian circuit*** in a weighted connected graph
- Example:



TSP by Exhaustive Search

Tour	Cost	Which one is the best?
a→b→c→d→a	$2+3+7+5 = 17$	←
a→b→d→c→a	$2+4+7+8 = 21$	
a→c→b→d→a	$8+3+4+5 = 20$	
a→c→d→b→a	$8+7+4+2 = 21$	
a→d→b→c→a	$5+4+3+8 = 20$	
a→d→c→b→a	$5+7+3+2 = 17$	←

More tours?

Less tours? **No other tours.**

Efficiency:

$O(n!)$



Traveling Salesman Problem (TSP)

- Theoretical interest
 - Basic **NP-complete** problem (→ not easy)
- **TSP is easy enough to explain, but it is very difficult to solve.**
- Practical (real world) application for TSP
 - Vehicle routing problem
 - Genome sequencing
 - Manufacturing
 - Plane routing
 - Telephone routing
 - Job sequencing

Variants (just FYI)

- Euclidean Traveling Salesman Selection Problem
- Asymmetric Traveling Salesman Problem
- Symmetric Wandering Salesman Problem
- Selective Traveling Salesman Problem
- TSP with distances 1 and 2, $\text{TSP}(1,2)$
- K-template Traveling Salesman Problem
- Circulant Traveling Salesman Problem
- On-line Traveling Salesman Problem
- Time-dependent TSP
- The Angular-Metric Traveling Salesman Problem
- Maximum Latency TSP
- Minimum Latency Problem
- Max TSP
- Traveling **Preacher** Problem
- Bipartite TSP
- Remote TSP
- Precedence-Constrained TSP
- Exact TSP
- The Tour Cover problem
- ...

Example: Knapsack Problem

- Given n items:
 - weights: $w_1 \ w_2 \dots \ w_n$
 - values: $v_1 \ v_2 \dots \ v_n$
 - a knapsack of capacity W
- Find most valuable subset of the items that fit into the knapsack
- Example: Knapsack capacity $W=16$

item	weight	value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
--------	--------------	-------------

{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	not feasible
{1,2,4}	12	\$60
{1,3,4}	17	not feasible
{2,3,4}	20	not feasible
{1,2,3,4}	22	not feasible

item	weight	value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Other combinations?

Efficiency:

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
--------	--------------	-------------

{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	not feasible
{1,2,4}	12	\$60
{1,3,4}	17	not feasible
{2,3,4}	20	not feasible
{1,2,3,4}	22	not feasible

item	weight	value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Other combinations?

Efficiency: $O(2^n)$

What is Brute Force?

- Attempting to guess the correct solution by **trying all**, or a chosen subset of all possible options
- Runs through **the entire available space**
 - Combination
 - Permutation
- One of the oldest and easiest types of design approach
- Generally viewed as the easy way in, but rarely yields good time efficiency.

Example: The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to job j is $C[i,j]$. Find an assignment that minimizes the total cost.

	Job 0	Job 1	Job 2	Job 3
Person 0	9	2	7	8
Person 1	6	4	3	7
Person 2	5	8	1	8
Person 3	7	6	9	4

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

How many assignments are there?

Pose the problem as the one about **a cost matrix**:

Assignment Problem by Exhaustive Search

9 2 7 8

$C =$ 6 4 3 7

5 8 1 8

7 6 9 4

cost matrix

one person per job

How many possible ways of assignment?

Assignment (col.#s)

1, 2, 3, 4

1, 2, 4, 3

1, 3, 2, 4

1, 3, 4, 2

1, 4, 2, 3

1, 4, 3, 2

etc.

Total Cost

9+4+1+4=18

9+4+8+9=30

9+3+8+4=24

9+3+8+6=26

9+7+8+9=33

9+7+1+6=23

etc.

(The optimal assignment can be found in **cubic time** via the “*Hungarian algorithm*”.)

Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- In some cases, there are much better alternatives!
 - Euler circuits
 - shortest paths
 - minimum spanning tree
 - assignment problem
- In many cases, exhaustive search or its variation is the only known way to get **exact solution**

Graph Traversal

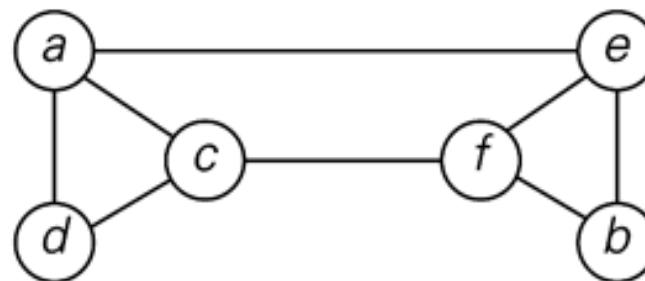
Many problems require processing all graph vertices (and/or edges) in systematic fashion

Graph traversal algorithms:

- Depth-first search (DFS)
- Breadth-first search (BFS)

Q: how we represent a graph?

Q: what kind of data structure we can use?



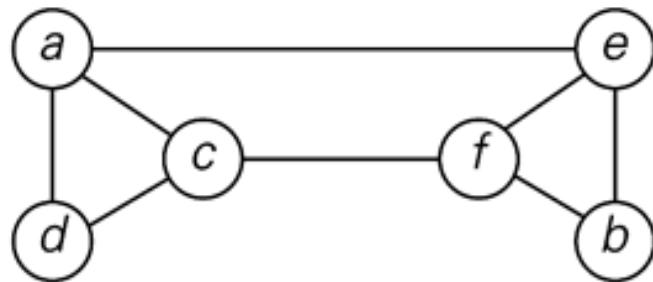
Recall in chapter 1:
adjacency matrix
adjacency list

Depth-First Search (DFS)

- Visits graph's vertices by always moving away from last visited vertex to unvisited one, backtracks if no adjacent unvisited vertex is available.
- **Uses a stack (from CSC 280)**
 - a vertex is pushed onto the stack when it's reached for the first time
 - a vertex is popped off the stack when it becomes a dead end, i.e., when there is no adjacent unvisited vertex
- “Redraws” graph in **tree-like fashion** (with tree edges and back edges for undirected graph)

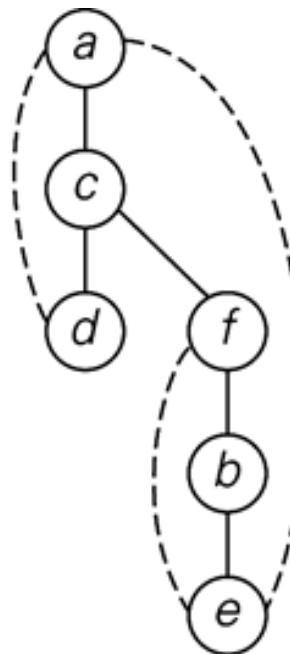
Example: DFS traversal of undirected graph

Given such graph: $G=(V, E)$



back edges: shown
with dashed lines

DFS tree:



DFS traversal stack:

$e_6, 2$
 $b_5, 3$
 $f_4, 4$
 $d_3, 1$
 $c_2, 5$
 $a_1, 6$

order of
visited

order of
becoming a
dead node

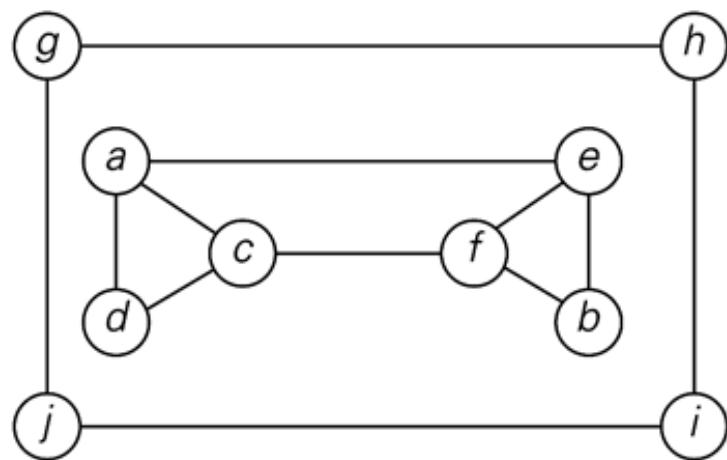
Pseudocode of DFS

ALGORITHM *DFS(G)*

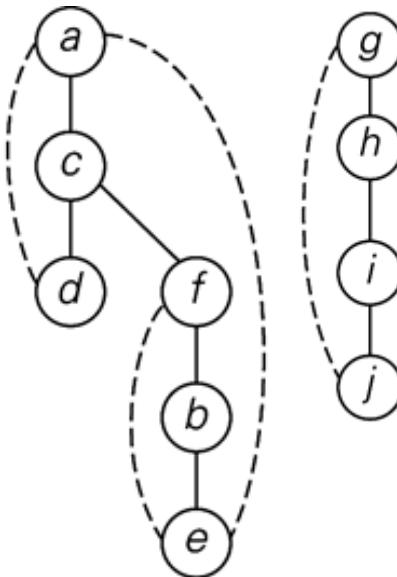
```
//Implements a depth-first search traversal of a given graph
//Input: Graph  $G = (V, E)$ 
//Output: Graph  $G$  with its vertices marked with consecutive integers
//in the order they've been first encountered by the DFS traversal
mark each vertex in  $V$  with 0 as a mark of being “unvisited”
count  $\leftarrow 0$ 
for each vertex  $v$  in  $V$  do
    if  $v$  is marked with 0
        dfs( $v$ )
        dfs( $v$ )
    //visits recursively all the unvisited vertices connected to vertex  $v$  by a path
    //and numbers them in the order they are encountered
    //via global variable count
    count  $\leftarrow$  count + 1; mark  $v$  with count
    for each vertex  $w$  in  $V$  adjacent to  $v$  do
        if  $w$  is marked with 0
            dfs( $w$ )
```

Example: DFS traversal of undirected graph

Given such graph: $G=(V, E)$



DFS tree:



DFS traversal stack:

$e_{6, 2}$	$j_{10, 7}$
$b_{5, 3}$	$i_{9, 8}$
$d_{3, 1}$	$h_{8, 9}$
$c_{2, 5}$	
$a_{1, 6}$	
$g_{7, 10}$	

Notes on DFS

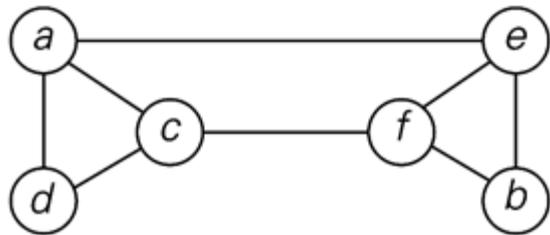
- DFS can be implemented with graphs represented as:
 - adjacency matrices: $\Theta(V^2)$
 - adjacency lists: $\Theta(|V| + |E|)$
- Yields two distinct ordering of vertices:
 - order in which vertices are first encountered (pushed onto stack)
 - order in which vertices become dead-ends (popped off stack)
- Applications:
 - checking connectivity, finding connected components
 - checking acyclicity
 - finding articulation points and biconnected components
 - searching state-space of problems for solution (AI)

Breadth-first search (BFS)

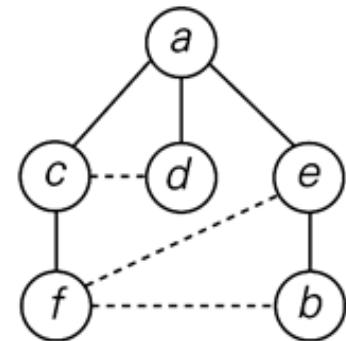
- Visits graph vertices by moving across to all the neighbors of last visited vertex
- Instead of a stack, BFS uses a queue
- Similar to level-by-level tree traversal
- “Redraws” graph in tree-like fashion (with tree edges and cross edges for undirected graph)

Example of BFS traversal of undirected graph

Given such graph: $G=(V, E)$



BFS tree: **BFS traversal queue:**



$a_1 \ c_2 \ d_3 \ e_4 \ f_5 \ b_6$

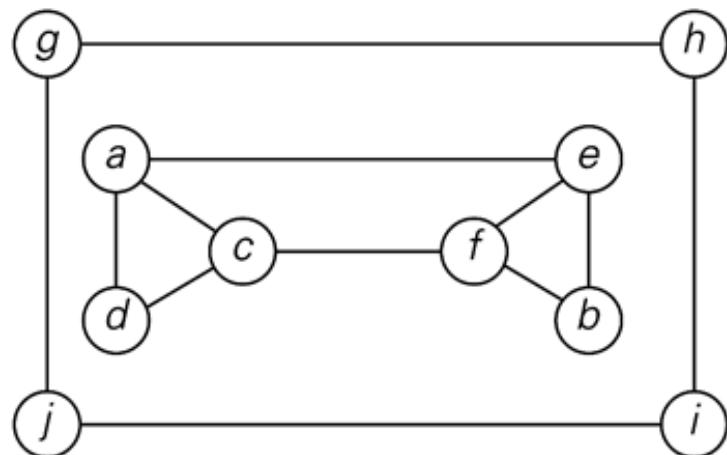
Pseudocode of BFS

ALGORITHM $BFS(G)$

```
//Implements a breadth-first search traversal of a given graph
//Input: Graph  $G = \{V, E\}$ 
//Output: Graph  $G$  with its vertices marked with consecutive integers
//in the order they have been visited by the BFS traversal
mark each vertex in  $V$  with 0 as a mark of being “unvisited”
 $count \leftarrow 0$ 
for each vertex  $v$  in  $V$  do
    if  $v$  is marked with 0
         $bfs(v)$ 
         $bfs(v)$ 
    //visits all the unvisited vertices connected to vertex  $v$  by a path
    //and assigns them the numbers in the order they are visited
    //via global variable  $count$ 
     $count \leftarrow count + 1$ ; mark  $v$  with  $count$  and initialize a queue with  $v$ 
while the queue is not empty do
    for each vertex  $w$  in  $V$  adjacent to the front vertex do
        if  $w$  is marked with 0
             $count \leftarrow count + 1$ ; mark  $w$  with  $count$ 
            add  $w$  to the queue
    remove the front vertex from the queue
```

Example of BFS traversal of undirected graph

Given such graph: $G=(V, E)$

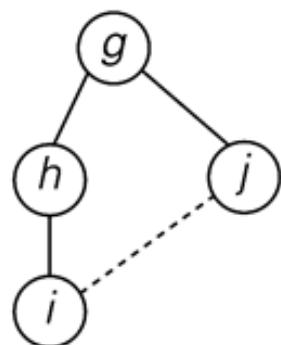


BFS tree:



BFS traversal queue:

$a_1 \ c_2 \ d_3 \ e_4 \ f_5 \ b_6$
 $g_7 \ h_8 \ j_9 \ i_{10}$

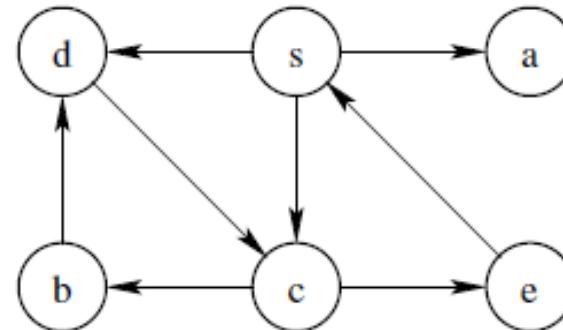


Notes on BFS

- BFS has same efficiency as DFS and can be implemented with graphs represented as:
 - adjacency matrices: $\Theta(V^2)$
 - adjacency lists: $\Theta(|V| + |E|)$
- Yields single ordering of vertices (order added/deleted from queue is the same)
- Applications: same as DFS, but can also find paths from a vertex to all other vertices with the smallest number of edges

Example: DFS/BFS

- Find the visited node order for each type of graph search, starting with node s
 - Write the adjacency matrix for the graph
 - Write the adjacency linked list for the graph
- Depth First Search
 - Solution: s a c b d e
- Breadth First Search
 - Solution: s a c d b e



Summary: Brute Force Algorithms

- Brute Force is a straightforward approach to solving a problem, usually directly based on the problem's statement and definitions of the concepts involved
- In many cases, Brute Force does not provide you a very efficient solution
- Brute Force may be enough for small or moderate size problems with current computers