Brute-Force Algorithms

CSC411
Richard Kelley

Brute-Force String Matching

* pattern: a string of m characters to search for

e text: a (longer) string of n characters to search in
* problem: find a substring in the text that matches the pattern

 Examples of Brute-Force String Matching:

1. Pattern: 001011
Text: 10010101101001100101111010

2. Pattern: happy
Text: [t 1is never too late to have a happy childhood.

Brute-Force String Matching

* pattern: a string of m characters to search for
e text: a (longer) string of n characters to search in

 problem: find a substring in the text that matches the
pattern

Brute-force algorithm
Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of
pattern to the corresponding character in text until

* all characters are found to match (successful search); or
e a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted,
realign pattern one position to the right and repeat Step 2

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/Input: An array 7[0..n — 1] of n characters representing a text and

/l an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/] matching substring or —1 if the search is unsuccessful
fori < 0Oton —mdo
Jj<0
while j <m and P[j]=T][i + j]do
Je=gerd

if j = m return
return —1

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching
/Input: An array 7[0..n — 1] of n characters representing a text and

/l an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
/] matching substring or —1 if the search is unsuccessful
fori < 0Oton —mdo

Jj<0

while j <m and P[j]=T][i + j]do

Je=gerd

if j =m return

return —1

Efficiency: O(mn)

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial
p(x)=ax"+a, x"1+..+ax'+a,

at a point x = x;

Brute-force algorithm

p < 0.0
for i < n downto 0 do
power < 1
for j < 1toido //compute x’
power <— power * X,
p < p + ali] * power

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial
p(x)=ax"+a, x"1+..+ax'+a,

at a point x = x;

Brute-force algorithm

Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial
p(x)=ax"+a, x"1+..+ax'+a,

at a point x = x;

Brute-force algorithm

p < 0.0
for i < n downto 0 do
power < 1
for j < 1toido //compute x’
power <— power * X,
p < p + ali] * power

Efficiency: O(n?)

Polynomial Evaluation: Improvement

Can we do better?

p < al0]
power < 1
fori < 1 tondo
power <— power * X,
p < p + ali] * power
return p

Polynomial Evaluation: Improvement

Can we do better?
We can do better by evaluating from right to left:
p(x)=ag+axt+..+a,.x"1 +ax"

Better brute-force algorithm

p < al0]
power < 1
fori < 1 tondo
power <— power * X,
p < p + ali] * power
return p

Efficiency:

Polynomial Evaluation: Improvement

Can we do better?
We can do better by evaluating from right to left:
p(x)=ag+axt+..+a,.x"1 +ax"

Better brute-force algorithm

p < al0]
power < 1
fori< 1 tondo
power <— power * X,
p < p + ali] * power
return p Can we do any better?

Efficiency: O(n)

Closest-Pair Problem

* Find the two closest points in a set of n points (in the
two-dimensional Cartesian plane).

e Brute-force algorithm

 Compute the distance between every pair of distinct
points and return the indexes of the points for which the
distance is the smallest.

d(pi, pj) = \/(x,- —x;)% 4 (i — y;)?

. ‘ . | B
euclidean vs |
manhattan distance ”

1 1 O

Closest-Pair Brute-Force Algorithm

ALGORITHM BruteForceClosestPoints(P)
/[Input: A list P of n (n > 2) points P; = (x1, ¥1),- - -, P. = (X5 V)
//Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori < 1ton—1do
for j «<i+1tondo
d < sqri((x; —x j)2 +(y; =y j)z) /Isqrt 1s the square root function
ifd <dmin
dmin < d: index] < i; index2 « j
return index]1, index?2

n—1 n n—1
Efficiency: O(n?) Cn) =Z; '2;2:2;@ — i)
=1 J=i 1=
Can you make it faster? —2An—D+n—2)+--+1]=@n—Dn

We will find out later...

Convex-Hull Problem

* Definition
* A set of points (finite or infinite) in the plane is called
convex if for any two points P and Q in the set, the entire

line segment with the endpoints at P and Q belongs to the
set

convex not convex

Examples of Convex Sets

(a) (b)

FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

Convex-Hull Problem

* Extreme points

What are extreme points?
How to identify those
extreme points?

FIGURE 3.6 The convex hull for this set of eight points is the convex polygon with
vertices at Py, Ps, Pg, P;, and Ps.

Convex-Hull Problem

* Brute-Force Convex-Hull Algorithm

* Find the pairs of points (P, P;) from a set of n points

* The line segment connecting P;and P;is a part of its convex
hull’s boundary if and only if the other points of the set lie
on the same side of the straight line through P;and P;

Convex hull brute force algorithm

* The straight line through two points (x1, y1), (x2, y2) in
the coordinate plane can be defined by the following
equation

e ax+by=c
wherea=y2-vyl,b=x1-x2, c=x1*y2-yl1*x2

e Such a line divides the plane into two half-planes: for
all the points in one of them: ax + by > ¢, while for all
the points in the other, ax + by < c.

Convex hull brute force algorithm

* Algorithm: For each pair of points p; and p; determine
whether all other points lie to the same side of the
straight line through p; and p; i.e. whether ax+by-c all
have the same sign (no 3+ points are co-linear)

o Efficiency: ©(n3)

* Can we do better?
* Divide-and-conquer
(see quickhull algorithm)

Quickhull

| 50) vt \ \ I \ + \ $ | } \ } 4 I $ —

Worst-case quadratic.

o}
100 o © c;o T For input precision that grows as a function of the number of
o} . .
°© % 0009 o points n, there was a conjectured worst case that was n log h,
+ (o) o o o T
° ° o % S . where h is the size of the convex hull. This was just disproved in
. 0 ®°%,%00 ° October 2024!
z 50— 0 o © 0o © 4 :
> 52 8 o009 0° %3
o o o o
0% 0735 ° %o o .
i so\qso\ovo\a\j i https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4989035
o]
o o O © ° ©
0+ O o o o 4

] S0 100

Brute-Force Strengths and Weaknesses

 Strengths
* wide applicability
e simplicity
* yields reasonable algorithms for some important problems

(e.g., matrix multiplication, sorting, searching, string
matching)

* Weaknesses
* rarely yields efficient algorithms
* some brute-force algorithms are unacceptably slow
* not as constructive as some other design techniques

Exhaustive Search

* A brute force solution to a problem involving search for an element
with a special property, usually among combinatorial objects such as
permutations, combinations, or subsets of a set.

* Method:

* generate a list of all potential solutions to the problem in a systematic manner
(see algorithms in Sec. 5.4)

* evaluate potential solutions one by one, disqualifying infeasible ones and, for
an optimization problem, keeping track of the best one found so far

* when search ends, announce the solution(s) found

Example: Traveling Salesman Problem

* Given n cities with known distances between each
pair, find the shortest tour that passes through all the
cities exactly once before returning to the starting city

 Alternatively: Find shortest Hamiltonian circuit in a
weighted connected graph

* Example:

TSP by Exhaustive Search

Tour Cost Which one is the best?
a%E%;éd%a 2+3+7+5 =17 <4um
a—~>b->d->c—>a 2+4+7+8 = 21
a—>c—>b—>d—>a 8434445 = 20
a>c>d>b>a _
a->d->b->c>a Srrvare =21
1> d>cSh->a 5+4+3+8 = 20

5+7+3+2 = 17 <=
More tours? Assume start from a2
*Q

Less tours? No other tours.
8

Efficiency:
O(n!)

Traveling Salesman Problem (TSP)

* Theoretical interest
e Basic NP-complete problem (=2 not easy)

* Practical (real world) application for TSP
* Vehicle routing problem
* Genome sequencing
* Manufacturing
* Plane routing
e Telephone routing
* Job sequencing

Variants (just FYI

* Euclidean Traveling Salesman Selection Problem
* Asymmetric Traveling Salesman Problem

* Symmetric Wandering Salesman Problem

* Selective Traveling Salesman Problem

* TSP with distances 1 and 2, TSP(1,2)

* K-template Traveling Salesman Problem

* Circulant Traveling Salesman Problem

* On-line Traveling Salesman Problem

* Time-dependent TSP

* The Angular-Metric Traveling Salesman Problem
* Maximum Latency TSP

* Minimum Latency Problem

¢ Max TSP

* Traveling Preacher Problem

* Bipartite TSP

* Remote TSP

* Precedence-Constrained TSP

* Exact TSP

* The Tour Cover problem

Example: Knapsack Problem

® Given nitems: -
® weights: w; w, ... w,
® values: v, v, .. v,
® 2a knapsack of capacity W

\
o (. \ [} o
® Find most valuable subset of the items that fit into the knapsack

® Example: Knapsack capacity W=16

item weight value

1 2 $20
2 5 $30
3 10 S50
4 5 $10

Knapsack Problem by Exhaustive Search

Subset Total weight Total value

1)) 420 |;tem welght v$azllae
{2} 5 530 2 5 $30
{3} 10 $50 3 10 $50
{4} 5 $10 4 5 $10
{1,2} 7 $50
{1,3} 12 S70
{1,4} 7 $30
{2,3} 15 S80
{2,4} 10 S40
{3,4} 15 $60 Other combinations?
{1,2,3} 17 not feasible
{1,2,4} 12 S60
{1,3,4} 17 not feasible)
{2,3,4} 20 not feasible Efﬁmency:

{1,2,3,4} 22 not feasible

Knapsack Problem by Exhaustive Search

Subset Total weight Total value

1) 5 $20 :tem weight v$azllae
{2} 5 530 2 5 $30
{3} 10 $50 3 10 $50
{4} 5 $10 4 5 $10
{1,2} 7 S50
{1,3} 12 S70
{1,4} 7/ S30
{2,3} 15 S80
{2,4} 10 S40
{3,4} 15 $60 Other combinations?
{1,2,3} 17 not feasible
{1,2,4} 12 $60
{1,3,4} 17 not feasible .
{2,3,4} 20 not feasible Efﬁmency: O(Zn)

{1,2,3,4} 22 not feasible

What is Brute Force?

* Attempting to guess the correct solution by trying all, or a chosen
subset of all possible options

* Runs through the entire available space

e Combination
e Permutation

* One of the oldest and easiest types of design approach

* Generally viewed as the easy way in, but rarely yields good time
efficiency.

Example: The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job.
The cost of assigning person i to job jis C[i,j]. Find an assignment that
minimizes the total cost.

Job0O Job1l Job2 Job3
Person 0 9 2 7 8
Person 1 6 4 3 7/
Person 2 5 8 1 8
Person 3 7 6 9 4

Algorithmic Plan: Generate all legitimate assignments, compute their costs,
and select the cheapest one.

How many assignments are there?
Pose the problem as the one about a cost matrix:

Assignment Problem by Exhaustive Search

9 2 7 8
C=6437 cost matrix
5818 one person per job
7 6 9 4
How many possible ways of assignment?
Assignment (col.#s) Total Cost
1,2,3,4 9+4+1+4=18
1,2,4,3 9+4+8+9=30
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33
1,4, 3,2 9+7+1+6=23
etc. etc.

(The optimal assignment can be found in cubic time via the “Hungarian algorithm”.)

Comments on Exhaustive Search

* Exhaustive-search algorithms run in a realistic amount of time only on
very small instances

* |In some cases, there are much better alternatives!
* Euler circuits
* shortest paths
* minimum spanning tree
e assignment problem

* In many cases, exhaustive search or its variation is the only known
way to get exact solution

Graph Traversal

Many problems require processing all graph vertices
(and/or edges) in systematic fashion

Graph traversal algorithms:

e Depth-first search (DFS)

e Breadth-first search (BFS) _
Recall in chapter 1:

Q: how we represent a graph? adjacency matrix

Q: what kind of data structure we can use? adjacency list

Depth-First Search (DFS)

* Visits graph’s vertices by always moving away from last
visited vertex to unvisited one, backtracks if no adjacent
unvisited vertex is available.

e Uses a stack (from CSC 280)

e avertex is pushed onto the stack when it’s reached for the first time

e avertex is popped off the stack when it becomes a dead end, i.e., when
there is no adjacent unvisited vertex

* “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph)

Example: DFS traversal of undirected graph

Given such graph: G=(

DFS tree: DFS traversal stack:
€6, 2
bs, 3

31 fag4
C2. 5
a6

/N

order of order of
visited becoming a
dead node

back edges: shown
with dashed lines

Pseudocode of DFS

ALGORITHM DEFS(G)

/Mmplements a depth-first search traversal of a given graph
/[Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex vin V do
if v 1s marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v by a path
//land numbers them in the order they are encountered
/Ivia global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

Example: DFS traversal of undirected graph

Given such graph: G=(V, E)

® ®
a.a °‘e
® O

— o
" —— ———

o —————

DFS tree:

”

GO

DFS traversal stack:
s, 2
bs,3 10,7
a3, 1 fa4 gg
C, 5 hg, g
a6 9710

Notes on DFS

* DFS can be implemented with graphs represented as:
 adjacency matrices: O(V2)
* adjacency lists: O(|V/[+]|E|)
* Yields two distinct ordering of vertices:
e order in which vertices are first encountered (pushed onto stack)
e order in which vertices become dead-ends (popped off stack)
* Applications:
* checking connectivity, finding connected components
e checking acyclicity
* finding articulation points and biconnected components
 searching state-space of problems for solution (Al)

Breadth-first search (BFS)

* Visits graph vertices by moving across to all the neighbors of last
visited vertex

* Instead of a stack, BFS uses a queue

* Similar to level-by-level tree traversal

* “Redraws” graph in tree-like fashion (with tree edges and cross edges
for undirected graph)

Example of BFS traversal of undirected graph

Given such graph: G=(V, E) BFS tree: BFS traversal queue:

a e

a1 Cy a3 ey 1 bg

Pseudocode of BFS

ALGORITHM BFS(G)

/Implements a breadth-first search traversal of a given graph
/Mnput: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they have been visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex v in V do

if v is marked with 0

bfs(v)

bfsiv)
/!visits all the unvisited vertices connected to vertex v by a path
/land assigns them the numbers in the order they are visited
/Ivia global variable count
count < count + 1; mark v with count and initialize a queue with v
while the queue is not empty do

for cach vertex w in V adjacent to the front vertex do

if w is marked with O
count < count + 1; mark w with count
add w to the queue
remove the front vertex from the queue

Example of BFS traversal of undirected graph

Given such graph: G=(V, E) BFS tree: BFS traversal queue:

O, ®

a

o 0‘

©
0 0

a1 Cp a3 €4 f5 bg

97 hg Jo o

Notes on BFS

* BFS has same efficiency as DFS and can be implemented with graphs
represented as:
 adjacency matrices: O(V2)
* adjacency lists: O(|V|+]|E|)

* Yields single ordering of vertices (order added/deleted from queue is
the same)

* Applications: same as DFS, but can also find paths from a vertex to all
other vertices with the smallest number of edges

Example: DFS/BFS

* Find the visited node order for each type of graph
search, starting with node s

* Write the adjacency matrix for the graph
* Write the adjacency linked list for the graph

e Depth First Search
e Solution:sacbde o ° o

* Breadth First Search ° ° °

e Solution:sacdbe

Summary: Brute Force Algorithms

 Brute Force is a straightforward approach to solving a problem, usually directly
based on the problem’s statement and definitions of the concepts involved

* |n many cases, Brute Force does not provide you a very efficient solution

 Brute Force may be enough for small or moderate size problems with current
computers

