
Brute-Force Algorithms
CSC 411

Richard Kelley



Brute-Force String Matching

• pattern: a string of m characters to search for
• text: a (longer) string of n characters to search in
• problem: find a substring in the text that matches the pattern

• Examples of Brute-Force String Matching: 
1. Pattern:     001011 

Text: 10010101101001100101111010 
                                        

2. Pattern: happy                                                                                       
Text: It is never too late to have a happy childhood.



Brute-Force String Matching
• pattern: a string of m characters to search for
• text: a (longer) string of n characters to search in
• problem: find a substring in the text that matches the 

pattern

Brute-force algorithm
Step 1  Align pattern at beginning of text
Step 2  Moving from left to right, compare each character of

       pattern to the corresponding character in text until
• all characters are found to match (successful search); or
• a mismatch is detected

Step 3  While pattern is not found and the text is not yet exhausted, 
 realign pattern one position to the right and repeat Step 2



Pseudocode and Efficiency 



Pseudocode and Efficiency 

Efficiency: O(mn)



Brute-Force Polynomial Evaluation
Problem: Find the value of  polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0                                                 

                      at a point x = x0

Brute-force algorithm
p ¬ 0.0
for i ¬ n downto 0 do
      power ¬ 1

      for  j ¬ 1 to i do //compute xi 
             power ¬ power * x0
            p ¬ p + a[i] * power



Brute-Force Polynomial Evaluation
Problem: Find the value of  polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0                                                 

                      at a point x = x0

Brute-force algorithm



Brute-Force Polynomial Evaluation
Problem: Find the value of  polynomial

 p(x) = anxn + an-1xn-1 +… + a1x1 + a0                                                 

                      at a point x = x0

Brute-force algorithm
p ¬ 0.0
for i ¬ n downto 0 do
      power ¬ 1

      for  j ¬ 1 to i do //compute xi 
             power ¬ power * x0
            p ¬ p + a[i] * power

Efficiency: O(n2)



Polynomial Evaluation: Improvement
Can we do better?

p ¬ a[0]
power ¬ 1
for i ¬ 1 to n do

    power ¬ power * x0
      p ¬ p + a[i] * power
return p



Polynomial Evaluation: Improvement
Can we do better?
We can do better by evaluating from right to left:
 p(x) = a0 + a1x1 +….+ an-1xn-1  + anxn 

Better brute-force algorithm 

Efficiency:

p ¬ a[0]
power ¬ 1
for i ¬ 1 to n do

    power ¬ power * x0
      p ¬ p + a[i] * power
return p



Polynomial Evaluation: Improvement
Can we do better?
We can do better by evaluating from right to left:
 p(x) = a0 + a1x1 +….+ an-1xn-1  + anxn 

Better brute-force algorithm 

Efficiency:

p ¬ a[0]
power ¬ 1
for i ¬ 1 to n do

    power ¬ power * x0
      p ¬ p + a[i] * power
return p

O(n)

Can we do any better?



Closest-Pair Problem
• Find the two closest points in a set of n points (in the 

two-dimensional Cartesian plane).

• Brute-force algorithm

• Compute the distance between every pair of distinct 
points and return the indexes of the points for which the 
distance is the smallest.

euclidean vs 
manhattan distance



Closest-Pair Brute-Force Algorithm

Efficiency: 
Can you make it faster? 
We will find out later…

O(n2)



Convex-Hull Problem
• Definition

• A set of points (finite or infinite) in the plane is called 
convex if for any two points P and Q in the set, the entire 
line segment with the endpoints at P and Q belongs to the 
set 

convex not convex



Examples of Convex Sets



Convex-Hull Problem
• Extreme points

What are extreme points? 
How to identify those 
extreme points?



Convex-Hull Problem
• Brute-Force Convex-Hull Algorithm

• Find the pairs of points (Pi,Pj) from a set of n points
• The line segment connecting Pi and Pj is a part of its convex 

hull’s boundary if and only if the other points of the set lie 
on the same side of the straight line through Pi and Pj 



Convex hull brute force algorithm

• The straight line through two points (x1, y1), (x2, y2) in 
the coordinate plane can be defined by the following 
equation

• ax + by = c
    where a = y2 – y1, b = x1 – x2,  c = x1*y2 - y1*x2 

• Such a line divides the plane into two half-planes: for 
all the points in one of them: ax + by > c, while for all 
the points in the other, ax + by < c. 



Convex hull brute force algorithm
• Algorithm: For each pair of points pi and pj determine 

whether all other points lie to the same side of the 
straight line through pi and pj, i.e. whether ax+by-c all 
have the same sign (no 3+ points are co-linear)

• Efficiency: Q(n3)

• Can we do better? 
• Divide-and-conquer 

(see quickhull algorithm)



Quickhull
Worst-case quadratic.

For input precision that grows as a function of the number of 
points n, there was a conjectured worst case that was n log h, 
where h is the size of the convex hull. This was just disproved in 
October 2024!

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4989035



Brute-Force Strengths and Weaknesses
• Strengths

• wide applicability
• simplicity
• yields reasonable algorithms for some important problems

(e.g., matrix multiplication, sorting, searching, string 
matching) 

• Weaknesses
• rarely yields efficient algorithms 
• some brute-force algorithms are unacceptably slow 
• not as constructive as some other design techniques



Exhaustive Search
• A brute force solution to a problem involving search for an element 

with a special property, usually among combinatorial objects such as 
permutations, combinations, or subsets of a set.

• Method:
• generate a list of all potential solutions to the problem in a systematic manner 

(see algorithms in Sec. 5.4)

• evaluate potential solutions one by one, disqualifying infeasible ones and, for 
an optimization problem, keeping track of the best one found so far

• when search ends, announce the solution(s) found



Example: Traveling Salesman Problem 
• Given n cities with known distances between each 

pair, find the shortest tour that passes through all the 
cities exactly once before returning to the starting city

• Alternatively: Find shortest Hamiltonian circuit  in a 
weighted connected graph

• Example:
a b

c d

8

2

7

5 3
4



TSP by Exhaustive Search
Tour                                          Cost                   

a→b→c→d→a                         
a→b→d→c→a                         
a→c→b→d→a
a→c→d→b→a
a→d→b→c→a
a→d→c→b→a

More tours?

Less tours?

Efficiency:

a b

c d

8

2

7

5 3
4

2+3+7+5 = 17
2+4+7+8 = 21
8+3+4+5 = 20
8+7+4+2 = 21
5+4+3+8 = 20
5+7+3+2 = 17

Assume start from a

No other tours.

Which one is the best?

O(n!)



Traveling Salesman Problem (TSP)
• Theoretical interest

• Basic NP-complete problem  (è not easy)
• TSP is easy enough to explain, but it is very 

difficult to solve.

• Practical (real world) application for TSP
• Vehicle routing problem
• Genome sequencing
• Manufacturing
• Plane routing
• Telephone routing
• Job sequencing



Variants (just FYI) 
• Euclidean Traveling Salesman Selection Problem 

• Asymmetric Traveling Salesman Problem

• Symmetric Wandering Salesman Problem 

• Selective Traveling Salesman Problem

• TSP with distances 1 and 2, TSP(1,2) 

• K-template Traveling Salesman Problem 

• Circulant Traveling Salesman Problem 

• On-line Traveling Salesman Problem 

• Time-dependent TSP 

• The Angular-Metric Traveling Salesman Problem 

• Maximum Latency TSP 

• Minimum Latency Problem 

• Max TSP

• Traveling Preacher Problem

• Bipartite TSP 

• Remote TSP 

• Precedence-Constrained TSP 

• Exact TSP 

• The Tour Cover problem 

• ...



Example: Knapsack Problem
l Given n items:

l weights:    w1   w2 …  wn
l values:       v1    v2  …  vn
l a knapsack of capacity W 

l Find most valuable subset of the items that fit into the knapsack

l Example:  Knapsack capacity W=16
item     weight       value  
1          2             $20
2          5             $30
3        10             $50
4          5             $10

Input:
Output:



Knapsack Problem by Exhaustive Search
Subset   Total weight     Total value
         {1}               2                  $20
         {2}               5                  $30
         {3}             10                  $50
         {4}               5                  $10
      {1,2}               7                  $50
      {1,3}             12                  $70
      {1,4}              7                   $30
      {2,3}             15                  $80
      {2,4}             10                  $40
      {3,4}             15                  $60
   {1,2,3}             17                  not feasible
   {1,2,4}             12                  $60
   {1,3,4}             17                  not feasible
   {2,3,4}             20                  not feasible
{1,2,3,4}             22                  not feasible

Efficiency:

Other combinations?

item   weight       value
1         2           $20
2         5           $30
3       10           $50
4         5           $10



Knapsack Problem by Exhaustive Search
Subset   Total weight     Total value
         {1}               2                  $20
         {2}               5                  $30
         {3}             10                  $50
         {4}               5                  $10
      {1,2}               7                  $50
      {1,3}             12                  $70
      {1,4}              7                   $30
      {2,3}             15                  $80
      {2,4}             10                  $40
      {3,4}             15                  $60
   {1,2,3}             17                  not feasible
   {1,2,4}             12                  $60
   {1,3,4}             17                  not feasible
   {2,3,4}             20                  not feasible
{1,2,3,4}             22                  not feasible

Efficiency:

Other combinations?

item   weight       value
1         2           $20
2         5           $30
3       10           $50
4         5           $10

O(2n)



What is Brute Force?
• Attempting to guess the correct solution by trying all, or a chosen 

subset of all possible options

• Runs through the entire available space
• Combination
• Permutation

• One of the oldest and easiest types of design approach
• Generally viewed as the easy way in, but rarely yields good time 

efficiency.



Example: The Assignment Problem
There are n people who need to be assigned to n jobs, one person per job.  
The cost of assigning person i to job j is C[i,j].  Find an assignment that 
minimizes the total cost.

      Job 0   Job 1   Job 2   Job 3
Person 0        9   2          7         8
Person 1        6          4          3         7
Person 2        5          8          1         8
Person 3        7          6          9         4

Algorithmic Plan: Generate all legitimate assignments, compute their costs, 
and select the cheapest one.
How many assignments are there?
Pose the problem as the one about a cost matrix:



Assignment Problem by Exhaustive Search
9   2   7   8 

           6   4   3   7
        5   8   1   8
           7   6   9   4 

   Assignment (col.#s)    Total Cost 
           1, 2, 3, 4   9+4+1+4=18
           1, 2, 4, 3   9+4+8+9=30
           1, 3, 2, 4   9+3+8+4=24
           1, 3, 4, 2   9+3+8+6=26
           1, 4, 2, 3   9+7+8+9=33
           1, 4, 3, 2   9+7+1+6=23
 etc.           etc.
(The optimal assignment can be found in cubic time via the “Hungarian algorithm”.)

C = 
one person per job

cost matrix

How many possible ways of assignment?



Comments on Exhaustive Search
• Exhaustive-search algorithms run in a realistic amount of time only on 

very small instances 

• In some cases, there are much better alternatives! 
• Euler circuits
• shortest paths
• minimum spanning tree
• assignment problem

• In many cases, exhaustive search or its variation is the only known 
way to get exact solution



Graph Traversal
Many problems require processing all graph vertices 

(and/or edges) in systematic fashion

Graph traversal algorithms:

• Depth-first search (DFS)

• Breadth-first search (BFS)
Recall in chapter 1:
adjacency matrix
adjacency list

Q: how we represent a graph?
Q: what kind of data structure we can use?



Depth-First Search (DFS) 
• Visits graph’s vertices by always moving away from last
    visited vertex to unvisited one, backtracks if no adjacent
    unvisited vertex is available.

•  Uses a stack  (from CSC 280)
• a vertex is pushed onto the stack when it’s reached for the first time
• a vertex is popped off the stack when it becomes a dead end, i.e., when 

there is no adjacent unvisited vertex

•  “Redraws” graph in tree-like fashion (with tree edges and
      back edges for undirected graph)



Example: DFS traversal of undirected graph

DFS traversal stack:DFS tree:

Given such graph: G=(V, E)

back edges: shown 
with dashed lines order of 

visited 
order of 
becoming a 
dead node 



Pseudocode of DFS



Example: DFS traversal of undirected graph

DFS traversal stack:DFS tree:

Given such graph: G=(V, E)



Notes on DFS
• DFS can be implemented with graphs represented as:

• adjacency matrices: Θ(V2)
• adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
• order in which vertices are first encountered (pushed onto stack)
• order in which vertices become dead-ends (popped off stack)

• Applications:
• checking connectivity, finding connected components
• checking acyclicity
• finding articulation points and biconnected components
• searching state-space of problems for solution (AI)



Breadth-first search (BFS)
• Visits graph vertices by moving across to all the neighbors of last 

visited vertex

• Instead of a stack, BFS uses a queue

• Similar to level-by-level tree traversal

• “Redraws” graph in tree-like fashion (with tree edges and cross edges 
for undirected graph)



Example of BFS traversal of undirected graph

BFS traversal queue:BFS tree:Given such graph: G=(V, E)



Pseudocode of BFS



Example of BFS traversal of undirected graph

BFS traversal queue:BFS tree:Given such graph: G=(V, E)



Notes on BFS
• BFS has same efficiency as DFS and can be implemented with graphs 

represented as:
• adjacency matrices: Θ(V2)
• adjacency lists: Θ(|V|+|E|)

• Yields single ordering of vertices (order added/deleted from queue is 
the same)

• Applications: same as DFS, but can also find paths from a vertex to all 
other vertices with the smallest number of edges



Example: DFS/BFS
• Find the visited node order for each type of graph 

search, starting with node s 
• Write the adjacency matrix for the graph
• Write the adjacency linked list for the graph

• Depth First Search
• Solution: s a c b d e

• Breadth First Search
• Solution: s a c d b e



Summary: Brute Force Algorithms
• Brute Force is a straightforward approach to solving a problem, usually directly 

based on the problem’s statement and definitions of the concepts involved

• In many cases, Brute Force  does not provide you a very efficient solution  

• Brute Force may be enough for small or moderate size problems with current 
computers


