Analysis of Recursive
Algorithms

CSC411
Richard Kelley

Plan for Analysis of Recursive
Algorithms

* General Plan for Analysis
* Decide on a parameter indicating an input’s size.

* |dentify the algorithm’s basic operation.

* Check whether the number of times the basic op. is executed may vary on different
inputs of the same size.

(If it may, the worst, average, and best cases must be ivestigated separately.)

* Set up a recurrence relation with an appropriate initial condition expressing the
number of times the basic op. is executed.

* Solve the recurrence (or, at the very least, establish its solution’s order of growth) by
backward substitutions or another method.

Review: Recursive Thinking (from CSC280)

* Recursion is a programming technique in which a method can call
itself to solve a problem

* A recursive definition is one which uses the word or concept being
defined in the definition itself

* In some situations, a recursive definition can be an appropriate way
to express a concept

* Before applying recursion to programming, it is best to practice
thinking recursively

Non-Recursive Programming

* Consider the problem of computing the sum of all the numbers
between 1 and N, inclusive

*IfNis5,thesumis1+2+3+4+5

* A non-recursive version (iterative):

public int sum (int num)

{

int result = 0;
for (1 = 1; 1 <= num ; i++)
result = result + i;

return result;

Recursive Programming

e This problem can be expressed recursively as:
The sum of 1 to N is N plus the sum of 1 to N-1
The sum of 1 to N-1 is N-1 plus the sum of 1 to N-2

public int sum (int num)
{
int result;
if (num == 1)
result = 1; «—— the base case
else
result = num + sum(num-1) ; «—— the recursive case
return result;

Recursive Programming

* A method or function can invoke itself; if set up that way, it is called a
recursive method (function)

* The code of a recursive method function must be structured to handle both
the base case(s) and the recursive case(s)

* Each call sets up a new execution environment, with new parameters and
new local variables

* As always, when the method completes, control returns to the method that
invoked it (which may be another instance of itself)

Recursive Method

e A method that it calls itself.

* In other words: A method that contains a method call with the same
name and signature of that method

* Let’s explain this again with another example!

e Factorial
e nNl=1*2*3%* . *n

A non-recursive version (iterative):

e Let us rewrite it as follows:
enl=n*n-1*n-2*n-3*..%*1

int fact (intn)
{

inti, f=1; //i: counter, f: will hold the result
for(i=n;i>1;i--)//loop: n down to 2
f*=i;//1*n*n-1%n-2* .. %2

return f; // return result to calling program

Recursive Thinking

 Mathematical formulas are often expressed recursively

* NI, for any positive integer N, is defined to be the product of
all integers between 1 and N inclusive

* This definition can be expressed recursively:

1! = 1
N! = N * (N-1)!

e A factorial is defined in terms of another factorial until the
base case of 1! is reached

Recursive Thinking

nl=n*(n-1)! «<— the recursive case
4
(n-1)! = (n-1) * (n-2)!
4
(n-2)! = (n-2) * (n-3)!

4
4

the base case @ — (1)! =1

The recursive version

int fact (intn)

{
if (n==1)// at every call n will decrease by 1
return 1; // until it reach 1
else // multiply current n by factorial of (n-1)
return n * fact (n-1);
}
// important note : n decrease by 1 at each call
// until it reach the base !

Q: What is the time complexity of the above recursive algorithm?
(will be discussed later)

Another Example: Adding up

* Let sum up squares from n to m (m>=n):
* SumS(n,m) =n?+ (n+1)2+ (n+2)2 + ... + m?

* A none recursive version (iterative):

public int SumS (int n, int m)

{

inti, sum=1; // i: counter, sum: to hold result

for(i=n;i<=m;i++)//loop:ntom
sum+=i*i;//(n*n) + (n+1)*(n+1) + ... + m*m

return sum; // returns the result

The recursive version

public int SumS (int n, intm)

{
if (n ==m) // Stop when n reaches m
return m * m; // and return last squared sum
else // multiply n by n and add the result of the
return (n*n) + SumsS (n+1,m); // next sum (n+1)
}

// important note : n increase by 1 at each call
// until it reaches m

Example: Recursive evaluation of n!

Definition:n!=1%2* ... %(n-1)*n forn =1 and 0! =1

Recursive definition of nl: F(n) = F(n-1) *n forn =1 and
F(0)=1

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

elsereturn F(n — 1) xn

* Size: |,

* Basic operation: multiplication
* Recurrence relation: t(n)=T(n-1)+1

Solving the recurrence for T(n)
T(n)=T(n-1)+1, T(0)=0

T(n)=T(n-1) +1
=(T(n-2)+1)+1 T(n-2) + 2
=(T(n-3)+1)+2 = T(n-3)+3

=T(n-i) +i

=T(n-n) +n
=n
The method is called

Analyzing (non)Recursive Algorithms

* When analyzing a loop, we determine the order of the loop body and
multiply it by the number of times the loop is executed

* Recursive analysis is similar

* We determine the order of the method body and multiply it by the
order of the recursion (the number of times the recursive definition is
followed)

Example: MergeSort

1. Divide the array into two parts

2. Divide the array into two parts again

3. Break each element into single

parts

4. Sort the elements from smallest to largest

5. Merge the divided sorted arrays together

6. The array has been sorted

38|27 (43 |3 82 |10
38 | 27 43 | 3 9|82 10
v E N NG
38 27 43 3 9 82 10
27 |38 343 9|82 10

3127 |38 (43 10 | 82

3(9(10|27 |38 (43|82

codesjava.com

Example: Mergesort

MergeSort(L)

1 if (lengthof L>1){

2 Split list into first half and second half

3 MergeSort(first half)

4 MergeSort(second half)

5 Merge first half and second half into sorted list
6

}

Example: MergeSort

MergeSort(L)

1 if (lengthof L>1){

2 Split list into first half and second half

3 MergeSort(first half)

4 MergeSort(second half)

5 Merge first half and second half into sorted list
6

}

What is the recurrence relation?
T(n) = 2T(n/2) + n
Assume n = 2K, and using backward substitution,

= T(n) = O(nlogn)

Master Theorem

Let T be an increasing function that satisfies the recurrence
relation:

T(n) = a T(n/b) + cnd

whenever n = bk, where Kk is a positive integer, a>=1, b is
an integer greater than 1, c is a positive real number, and d
IS a non-negative real number. Then:

O(n9) ifa<bd case 1
T(n) = O(n¢ logwn) if a=bd case 2
O(n logra) if a> b9 case 3

Master Theorem

Let T be an increasing function that satisfies the
recurrence relation:

T(n) = a T(n/b) + cnd

whenever n = bk, where Kk is a positive integer, a >=
1, b is an integer greater than 1, c is a positive real
number, and d is a non-negative real number.
Then:

O(n9) if a<bd case 1
T(n) = O(n9 logwn) ifa=b9 case?2
O(n logea) if a>bd case 3

a >= 1: The number of subproblems

b > 1: Amount by which problems
shrink

chnd: Amount of nonrecursive work
at each level of recursion.

The cases are (effectively)
comparing cnd with n”*(log_b(a))

Examples
T(n) = a T(n/b) + cn®
T(n) = 2T(n/2) + n
(0(nd) ifa<bd
a=2,b=2,c=1,d=1 = ig:g.o'gcf;’") ;:::Ed

—> Case 2

= T(n) = O(nlog:n) = O(nlogn)

Examples

T(n) = 2T(n/2) + n2

a=2,b=2,c=1,d=2
—> Case 1

= T(n) = O(n?)

T(n) = 3

(0(nd)
O(n9 logwn)

O(n logy, a)

T(n) = a T(n/b) + cn®

if a < bd
if a = bd
if a > bd

Examples

T(n) - ZT(H/Z) +\/Z T(n) = a T(n/b) + cn®
[O(n) if a < be
a=2 b=2c=1d=1/2 T(n) = < O(n9logen) if a = b
' ’ d O(n'ee:23) ifa > bd

—> Case 3

= T(n) = O(n)

Example: MergeSort

MergeSort(L)

1 if (lengthof L>1){

2 Split list into first half and second half

3 MergeSort(first half)

4 MergeSort(second half)

5 Merge first half and second half into sorted list
6

}

T(n) = 2T(n/2) + n
a=2,b=2,c=1,d=1
—> Case 2

= T(n) = O(nlogn)

Inadmissible equations

* The following equations cannot be solved using the
master theorem:

T(n)=%T(n/2) +n
* aisVs
* a heeds to be a constant and a >=1

T(n) = 2T(n/2) + n/logn

e the cost of the work done outside the recursive calls is non-
polynomial

) 2re/2EbAStant

Fibonacci numbers

The Fibonacci numbers:
0,1,1,23,5,8, 13, 21, ...

Definition-based recursive algorithm

int Fib(int n)
if (n <= 1) a strong candidate for the title of
Worst Algorithm in the World
return 1;
else

return Fib(n - 1) + Fib(n - 2);
}
e T(n<=1) = O(1)
* T(n) = T(n-1)+T(n-2)+0(1)

General 2" order linear homogeneous recurrence with
constant coefficients.

Analysis Of Recursive Fibonacci

T(n) =c ifn=1orn=2 (1)
Tn) =T(h-1)+T(n-2)+b if n>2 (2)

We determine a lower bound on T(n):

Expanding: T(n)=T(n-1)+T(n-2)+b

2T(n-2)+T(n-2)+b The base case is reached whenn-2k=2 >
=2T(n-2)+b k=(n_2)/2

=2[T(n-3)+T(n-4)+b]+b by substituting T(n - 2) in (2) Hence T(n) 2= 2 (n-2)/2 T(2) + [2 (n-2)/2 1]b
>22[T(n-4)+T(n-4)+b]+b =(b+c)2(n—2)/2_b
=27T(n-4)+2b+b = [(b+c)/2]*(2)“/2—b ->
=2[T(n-5)+T(n-6)+b]l+2b+b by substituting T(n - 4) in (2) Recursive Fibonacci is exponential

223T(n-6)+(22+2'+2%b

> 2*T(n —2k) + (2% + 2%2 4+, .. + 21+ 20D

= 2T(n - 2k) + (2X- 1)b

Fibonacci numbers

The Fibonacci numbers:
0,1,1,23,5,8, 13, 21, ...

The recurrence relation: T(n) =T(n-1) + T(n-2) + 1

What is the order of the algorithm?

General 2" order linear homogeneous recurrence with

constant coefficients:
aX(n) + bX(n-1) + cX(n-2) =0

Goal: Solving the above quadratic equation.

Solving aX(n) + bX(n-1) + cX(n-2) =0

* Set up the characteristic equation (quadratic)
ar’+br+c=0

* Solve to obtain roots r; and r,

* General solution to the recurrence
if r,and r, are two distinct real roots: X(n) = or," + Br,"
if r,=r,=rare two equal real roots: X(n) = &r"+ Bnr"

* Particular solution can be found by using initial
conditions

