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Plan for Analysis of Recursive
Algorithms

• General Plan for Analysis
• Decide on  a parameter indicating an input’s size.

• Identify the algorithm’s basic operation. 

• Check whether the number of times the basic op. is executed may vary on different 
inputs of the same size. 

    (If it may, the worst, average, and best cases must be ivestigated separately.)

• Set up a recurrence relation with an appropriate initial condition expressing the 
number of times the basic op. is executed.

• Solve the recurrence (or, at the very least, establish its solution’s order of growth) by 
backward substitutions or another method.



Review: Recursive Thinking (from CSC280)

• Recursion is a programming technique in which a method can call 
itself to solve a problem

• A recursive definition is one which uses the word or concept being 
defined in the definition itself

• In some situations, a recursive definition can be an appropriate way 
to express a concept

• Before applying recursion to programming, it is best to practice 
thinking recursively



Non-Recursive Programming

• Consider the problem of computing the sum of all the numbers 
between 1 and N, inclusive
• If N is 5, the sum is 1 + 2 + 3 + 4 + 5
• A non-recursive version (iterative):

public int sum (int num)
{
   int result = 0;
   for (i = 1; i <= num ; i++)
  result = result + i;
 
 return result;
}



Recursive Programming

public int sum (int num)
{
   int result;
   if (num == 1)
      result = 1;
   else
      result = num + sum(num-1);
   return result;
}

the base case

the recursive case

l This problem can be expressed recursively as:

  The sum of 1 to N is N plus the sum of 1 to N-1

  The sum of 1 to N-1 is N-1 plus the sum of 1 to N-2



Recursive Programming
• A method or function can invoke itself; if set up that way, it is called a 

recursive method (function)
• The code of a recursive method function must be structured to handle both 

the base case(s) and the recursive case(s)
• Each call sets up a new execution environment, with new parameters and 

new local variables
• As always, when the method completes, control returns to the method that 

invoked it (which may be another instance of itself)



Recursive Method

• A method that it calls itself.
• In other words: A method that contains a method call with the same 

name and signature of that method

• Let’s explain this again with another example!
• Factorial 

• n! = 1 * 2 * 3 * . . . * n



A non-recursive version (iterative):
• Let us rewrite it as follows:

• n! = n * n-1 * n-2 * n-3 * … *1

int fact ( int n )
{
 int i, f=1; // i: counter, f: will hold the result
 for ( i = n; i > 1 ; i--) // loop: n down to 2
  f * = i; // 1 * n * n-1 * n-2 * … * 2
 
 return f; // return result to calling program
}



Recursive Thinking
• Mathematical formulas are often expressed recursively
• N!, for any positive integer N, is defined to be the product of 

all integers between 1 and N inclusive
• This definition can be expressed recursively:

  1!  =  1

  N!  =  N * (N-1)!

  

• A factorial is defined in terms of another factorial until the 
base case of 1! is reached



Recursive Thinking
n! = n * (n-1)!

(n-1)! = (n-1) * (n-2)!

(n-2)! = (n-2) * (n-3)!

(1)! = 1

….

the base case

the recursive case



The recursive version

int fact ( int n )
{
 if (n == 1 ) // at every call n will decrease by 1
  return 1; // until it reach 1
 
 else // multiply current n by factorial of (n-1)
  return n * fact (n-1);
} 
// important note : n decrease by 1 at each call
//                           until it reach the base !

Q: What is the time complexity of the above recursive algorithm?
(will be discussed later)



Another Example: Adding up
• Let sum up squares from n to m (m>=n):

• SumS(n,m) = n2 + (n+1)2 + (n+2)2 + … + m2

• A none recursive version (iterative):

public int SumS ( int n, int m )
{
 int i, sum=1; // i: counter, sum: to hold result
 
 for ( i = n; i <=m ; i++) // loop: n to m
  sum + = i * i; // (n*n) + (n+1)*(n+1) + … + m*m
 
 return sum; // returns the result
}



The recursive version

public int SumS (int n, int m )
{
 if (n == m ) // Stop when n reaches m
  return m * m; // and return last squared sum

 else // multiply n by n and add the result of the
  return (n*n) + SumS (n+1,m); // next sum (n+1)
} 
// important note : n increase by 1 at each call
//                           until it reaches m



Example: Recursive evaluation of n!
Definition: n ! = 1 * 2 * … *(n-1) * n  for n ≥ 1  and  0! = 1

Recursive definition of n!:  F(n) = F(n-1) * n  for n ≥ 1  and  
                                               F(0) = 1

• Size:
• Basic operation: 
• Recurrence relation: 

n
multiplication

T(n) = T(n-1) + 1



Solving the recurrence for T(n)
T(n) = T(n-1) + 1,  T(0) = 0

T(n) = T(n-1) + 1
         = (T(n-2) + 1) + 1   =   T(n-2) + 2
         = (T(n-3) + 1) + 2   =   T(n-3) + 3
         …
         = T(n-i) + i
         … 
         = T(n-n) + n
         = n
The method is called backward substitution.



Analyzing (non)Recursive Algorithms

• When analyzing a loop, we determine the order of the loop body and 
multiply it by the number of times the loop is executed

• Recursive analysis is similar

• We determine the order of the method body and multiply it by the 
order of the recursion (the number of times the recursive definition is 
followed)



Example: MergeSort



Example: Mergesort
MergeSort(L)
1    if (length of L > 1) {
2 Split list into first half and second half
3 MergeSort(first half)
4 MergeSort(second half)
5 Merge first half and second half into sorted list
6     }



Example: MergeSort
MergeSort(L)
1    if (length of L > 1) {
2 Split list into first half and second half
3 MergeSort(first half)
4 MergeSort(second half)
5 Merge first half and second half into sorted list
6     }

What is the recurrence relation?
T(n) = 2T(n/2) + n  
Assume n = 2k, and using backward substitution, 
 Þ T(n) = O(nlogn)



Master Theorem 
Let T be an increasing function that satisfies the recurrence 
relation:

 T(n) = a T(n/b) + cnd

whenever n = bk, where k is a positive integer, a >= 1, b is 
an integer greater than 1, c is a positive real number, and d 
is a non-negative real number.  Then:

  O(nd)         if a < bd  case 1
T(n) = O(nd logbn)          if a = bd  case 2
  O(n logba)               if a > bd  case 3



Master Theorem 
Let T be an increasing function that satisfies the 
recurrence relation:

 T(n) = a T(n/b) + cnd

whenever n = bk, where k is a positive integer, a >= 
1, b is an integer greater than 1, c is a positive real 
number, and d is a non-negative real number.  
Then:

  O(nd)         if a < bd  case 1
T(n) = O(nd logbn)          if a = bd  case 2
  O(n logba)               if a > bd  case 3

a >= 1: The number of subproblems

b > 1: Amount by which problems 
shrink

cn^d: Amount of nonrecursive work 
at each level of recursion.

The cases are (effectively) 
comparing cn^d with n^(log_b(a))



Examples

T(n) = 2T(n/2) + n  

 a = 2, b = 2, c = 1, d = 1

 Þ Case 2 

 Þ T(n) = O(nlog2n) = O(nlogn)

T(n) = a T(n/b) + cnd

  O(nd)              if a < bd

T(n) =   O(nd logbn)    if a = bd

  O(n logb a)        if a > bd



Examples

T(n) = 2T(n/2) + n2  

 

 a = 2, b = 2, c = 1, d = 2

 Þ Case 1 

 Þ T(n) = O(n2)

T(n) = a T(n/b) + cnd

  O(nd)              if a < bd

T(n) =   O(nd logbn)    if a = bd

  O(n logb a)        if a > bd



Examples

T(n) = 2T(n/2) +   

 a = 2, b = 2, c = 1, d = 1/2

 Þ Case 3 

 Þ T(n) = O(n)

! T(n) = a T(n/b) + cnd

  O(nd)              if a < bd

T(n) =   O(nd logbn)    if a = bd

  O(n logb a)        if a > bd



Example: MergeSort
MergeSort(L)
1    if (length of L > 1) {
2 Split list into first half and second half
3 MergeSort(first half)
4 MergeSort(second half)
5 Merge first half and second half into sorted list
6     }

T(n) = 2T(n/2) + n  
 a = 2, b = 2, c = 1, d = 1
 Þ Case 2 
 Þ T(n) = O(nlogn)



Inadmissible equations
• The following equations cannot be solved using the 

master theorem:

• a is ½
• a needs to be a constant and a >=1 

• the cost of the work done outside the recursive calls is non-
polynomial 

• a is not a constantT(n) = 2nT(n/2) + nn

T(n) = 2T(n/2) + n/logn

T(n) = ½ T(n/2) + n



Fibonacci numbers

The Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, … 



Definition-based recursive algorithm

• T(n<=1) = O(1)
• T(n) = T(n-1)+T(n-2)+O(1)

a strong candidate for the title of 
Worst Algorithm in the World

General 2nd order linear homogeneous recurrence with 
constant coefficients.

int Fib(int n) 
{ 
       if (n <= 1) 
           return 1; 
       else 
           return Fib(n - 1) + Fib(n - 2); 
} 



Analysis Of Recursive Fibonacci
T(n)   = c                                            if n = 1 or n = 2           (1)

                        T(n)  =  T(n – 1) + T(n – 2) + b          if  n > 2                        (2)

We determine a lower bound on T(n):

Expanding: T(n) = T(n - 1) + T(n - 2) + b

≥ T(n - 2) + T(n - 2) + b

= 2T(n - 2) + b

= 2[T(n - 3) + T(n - 4) + b] + b               by substituting T(n - 2) in (2)

³ 2[T(n - 4) + T(n - 4) + b] + b

= 22T(n - 4) + 2b + b

= 22[T(n - 5) + T(n - 6) + b] + 2b + b      by substituting T(n - 4) in (2)

≥ 23T(n – 6) + (22 + 21 + 20)b

. . .

³ 2kT(n – 2k) + (2k-1 + 2k-2 + . . . + 21 + 20)b

= 2kT(n – 2k) + (2k – 1)b

The base case is reached when n – 2k = 2 à
k = (n - 2) / 2

Hence T(n)  ≥  2 (n – 2) / 2 T(2) + [2 (n - 2) / 2 – 1]b
= (b + c)2 (n – 2) / 2 – b
= [(b + c) / 2]*(2)n/2 – b      à

Recursive Fibonacci is exponential



Fibonacci numbers
The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, … 

The recurrence relation: T(n) = T(n-1) + T(n-2) + 1

What is the order of the algorithm? 

General 2nd order linear homogeneous recurrence with 
constant coefficients:

                  aX(n) + bX(n-1) + cX(n-2) = 0

Goal: Solving the above quadratic equation.



Solving   aX(n) + bX(n-1) + cX(n-2) = 0
• Set up the characteristic equation (quadratic)
     ar2 + br + c = 0

• Solve to obtain roots r1 and r2

• General solution to the recurrence
if r1 and r2 are two distinct real roots:  X(n) = αr1

n + βr2
n

if r1 = r2 = r are two equal real roots:      X(n) = αrn + βnr 
n

• Particular solution can be found by using initial 
conditions


