
Design and Analysis of 
Algorithms

Week 2: Fundamentals of Algorithm Analysis
Richard Kelley



Analysis of Algorithms

• Issues:
• correctness
• time efficiency
• space efficiency
• optimality

• Approaches: 
• theoretical analysis
• empirical analysis



Experimental Evaluation of Running Time

• Write a program implementing the algorithm
• Run the program with some inputs 

• varying size and composition
• You can use a method like 

System.currentTimeMillis() to get an accurate 
measure of the actual running time

• Plot the results
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Empirical Analysis of Time Efficiency

• Select a specific (typical) sample of inputs

• Use physical unit of time (e.g.,  milliseconds)
        or
    Count actual number of basic operation’s executions

• Analyze the empirical data



Limitations of Experiments

• Experimental evaluation of running time is very useful but
• It is necessary to implement the algorithm, which may be difficult (in terms of 

time) and can be expensive
• Results may not be indicative of the running time on other inputs not 

included in the experiment
• In order to compare two algorithms, the same hardware and software 

environments must be used



How to (theoretically) calculate the running 
time? 

• Most algorithms transform input objects into output 
objects

§ The running time of an algorithm typically grows with 
the input size
§ idea: analyze running time as a function of input size

sorting
algorithm5 13 2 1 32 5

input object output object



How to Calculate Running Time
• Problem: finds the first prime number in an array by 

scanning it left to right
• Given an algorithm, running time can be very different 

even on inputs of the same size, 

§ Idea: analyze running time in the 
§ best case 
§ worst case
§ average case

5 13 2 8 74 6

1 64 8 5 23 7



How to Calculate Running Time 

• Best case running time is usually useless
• Average case time is very useful but often 

difficult to determine
• We focus on the worst case running time

• Easier to analyze
• Crucial to applications such as games, finance 

and robotics
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Theoretical Analysis of Time Efficiency
• Time efficiency is analyzed by determining the number 

of repetitions of the basic operation as a function of 
input size
• Basic operation: the operation that contributes most 

towards the running time of the algorithm

                       T(n) ≈ copC(n)

running time
execution time for
the basic operation

Number of times basic 
operation is executed

input size



Input size and basic operation examples

Problem Input size measure Basic operation

Searching for a key in 
a list of n items

Number of list’s items,  
i.e. n Key comparison

Multiplication of two 
matrices

Matrix dimensions or 
total number of elements

Multiplication of two 
numbers

Checking primality of 
a given integer n

n’size = number of digits 
(in binary representation) Division

Typical graph problem #vertices and/or edges Visiting a vertex or 
traversing an edge



Review (slides from CSC 280):

• The following topics were covered in the past:
• Discuss the goals of software development with respect to efficiency

• Introduce the concept of algorithm analysis
• Explore the concept of asymptotic complexity

• Compare various growth functions

• We will review those topics and add depth to them 



Analysis of Algorithms

• An aspect of software quality is the efficient use of resources, 
including the CPU time and memory

• Algorithm analysis is a core computing topic

• It gives us a basis to compare the efficiency of algorithms

• Example: which sorting algorithm is more efficient?



Growth Functions

• Analysis is defined in general terms, based on:
• the problem size (ex: number of items to sort)
• key operation (ex: comparison of two values)

• A growth function shows the relationship between the size of the 
problem (n) and the time it takes to solve the problem

• For example:
t(n) = 15n2 + 45 n



Growth of Functions
How much (unit) time is needed for a problem size of N if you have the growth function: t(n) = 15n2 + 45n



Growth Functions

• It's not usually necessary to know the exact growth function
• The key issue is the asymptotic complexity of the function – how it 

grows as n increases
• Determined by the dominant term in the growth function
• This is referred to as the order of the algorithm
• We often use Big-Oh notation to specify the order, such as O(n2)



Some growth functions and their asymptotic 
complexity

Key: ignore multiplicative constants
  and the lower order terms



Do the growth functions really matter?

Is the following statement true?
• With the advances in the speed of processors and the availability of 

large amounts of inexpensive memory, one can simply find a faster 
CPU to overcome the inefficiency of algorithm. 



Increase in problem size with a ten-fold 
increase in processor speed



Comparison of typical growth functions for 
small values of N



Comparison of typical growth functions for 
large values of N



Analyzing Loop Execution

• A loop executes a certain number of times (say n)
• Thus the complexity of a loop is n times the complexity of the body of 

the loop
• When loops are nested, the body of the outer loop includes the 

complexity of the inner loop



Analyzing Loop Execution

• What is the time complexity of the following loop?
   x=0;
   for (int i = 0; i < n; i++){
       x = x + 1;
   }

• The time complexity of the loop is O(n) because the loop executes n 
times and the body of the loop is O(1)



Analyzing Loop Execution

• What is the time complexity of the following loop?
 
for (int i=0; i<n; i++) {
    x = x + 1;
    for (int j=0; j<n; j++){
        y = y - 1;
    }
}

• The time complexity of the loop is O(n2) because the loop executes n 
times and the body of the loop, including a nested loop, is O(n)

O(n) O(n) 



Examples

• Find the sum of 1 to n.
int sum=0;
for (int i=1; i<=n; i++) {
    sum = sum + i;
}

• The time complexity of the for loop is O(n)

Does there exist a 
better algorithm?



Examples

• Find the sum of 1 to n.
int sum=0;
for (int i=1; i<=n; i++) {
    sum = sum + i;
}

• The time complexity of the for loop is O(n)
• The time complexity of the formula is O(1)

Does there exist a 
better algorithm?

int sum = n*(n+1)/2;  



Analyzing Method Calls

• To analyze method calls, we simply replace the method call with the 
order of the body of the method
• A call to the following method is O(1)
 public void printsum(int count)
 {
  sum = count*(count+1)/2;
  System.out.println(sum);
 }



More examples

• What is the time complexity of the following while loop?

 while (count < n) {
     x = x + 1;
     count++;
 }

• The time complexity of the either while loop is O(n)

while (count < 2n) {
    x = x + 2;
   count++;
}



More examples

for (int count=0; count<n; count++){
     printsum(count);
   }

 public void printsum(int count){
     int sum=0; 
     for (int i=0; i<count; i++) { 
         sum = sum + i; 

  }
  System.out.println(sum);

 }



More examples

for (int count=0; count<n; count++){
     printsum(count);
   }

 public void printsum(int count){
     int sum=0; 
     for (int i=0; i<count; i++) { 
         sum = sum + i; 

  }
  System.out.println(sum);

 }

The time complexity is 
O(n2)



Two Broad Classes of Analysis

• Nonrecursive Algorithms
• Recursive Algorithms

• These are “equivalent” in the sense that we can convert between 
them:

• Recursive -> Nonrecursive: Simulate the recursion in a loop.
• Nonrecursive -> Recursive: Study functional programming.



Analyze the time efficiency of non-recursive 
algorithms
• General Plan for Analysis
 

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation
• Determine worst, average, and best cases for input of size n
• Set up a sum for the number of times the basic operation is executed
• Simplify the sum using standard formulas and rules



Example: Sequential search

• Worst case?
• Best case?
• Average case?



Solution

• Cworst(n) = n

• Cbest(n) = 1

• Cavg(n) = 1 ∗ !
"
+ 2 ∗ !

"
+⋯+ 𝑖 ∗ !

"
+⋯+ 𝑛 ∗ !

"
+ 𝑛 1 − 𝑝

               = 1 + 𝑛 ∗ !
#
+ 𝑛 1 − 𝑝

               = (1 − !
#
) ∗ 𝑛 + !

#
• p: the probability the key is in array A[1..n]



Useful summation formulas and rules
Sl£i£u1 = 1+1+…+1 = u - l + 1
     In particular l = 1, u = n, Sl£i£u1 = n - 1 + 1 = n Î Q(n) 

S1£i£n i = 1+2+…+n = n(n+1)/2 »  n2/2 Î Q(n2) 

S1£i£n i2 = 12+22+…+n2 = n(n+1)(2n+1)/6 » n3/3 Î Q(n3) 

S0£i£n ai = 1 + a +…+ an = (an+1 - 1)/(a - 1)  for any a ¹ 1
         In particular, S0£i£n 2i = 20 + 21 +…+ 2n = 2n+1 - 1 Î Q(2n ) 

S(ai ± bi ) = Sai ± Sbi         

Scai = cSai       

Sl£i£uai = Sl£i£mai + Sm+1£i£uai 



Asymptotic order of growth

• O(g(n)): big oh
• The set of all functions with a smaller or same order of growth as g(n)
• Class of functions f(n) that grow no faster than g(n)

• Ω(g(n)): big omega
• The set of functions with a larger or same order of growth as g(n)
• Class of functions f(n) that grow at least as fast as g(n)

• Θ(g(n)): big theta
• The set of all functions that have the same order of growth as g(n)
• class of functions f(n) that grow at same rate as g(n)



Big-oh
l t(n) <= cg(n)    for all n >= n0 f(n) that grow no faster than g(n)



Big-omega
l t(n) >= cg(n)    for all n >= n0 f(n) that grow at least as fast as g(n)



Big-theta
l c2g(n) <= t(n) <= c1g(n)    for all n >= n0 

f(n) that grow at same rate as g(n)



Example: Element uniqueness problem

What is t(n) = ? 

What is the big theta of the algorithm? Θ(n2) 



Example: Matrix multiplication



Example: Matrix multiplication

What is t(n) = ? 

What is the big theta of the algorithm? Θ(n3) 



Common time complexities

• Arranging the following time complexities from better to worst.
• O(n), O(n2), O(n3), O(1), O(log n) , O(n log n), O(2n)



Common time complexities

• O(1)  constant time
• O(log n)  log time
• O(n)  linear time
• O(n log n)  log linear time
• O(n2)  quadratic time
• O(n3)  cubic time
• O(2n)  exponential time

BETTER

WORSE



Math you need to review

• properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

• properties of exponentials:
a(b+c) = aba c
abc = (ab)c
ab /ac = a(b-c)
b = a logab
bc = a c*logab

n Summations (see CSC 210)
n Logarithms and Exponents



When Do Logarithms Occur?
} Algorithms have a logarithmic term when they use a 

divide and conquer technique
} the data keeps getting “divided by 2”
 
 // input integer: n > 0
 int foo(int n)
{   
    int total = 0;
    while( n > 0 )
  {    n = n / 2;
         total++;
    }
    return total;
}



Summary: Time efficiency of non-recursive 
algorithms

• General Plan for Analysis
 

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation
• Determine worst, average, and best cases for input of size n
• Set up a sum for the number of times the basic operation is 

executed
• Simplify (or evaluate) the sum using standard formulas and 

rules.                       


