Design and Analysis of
Algorithms

Week 2: Fundamentals of Algorithm Analysis
Richard Kelley

Analysis of Algorithms

* |ssues:
e correctness
* time efficiency
* space efficiency
e optimality

* Approaches:
* theoretical analysis
e empirical analysis

Experimental Evaluation of Running Time

* Write a program implementing the algorithm

* Run the program with some inputs
* varying size and composition

* You can use a method like
System.currentTimeMillis() to get an accurate
measure of the actual running time

* Plot the results

9000

8000 -
7000
6000 -
5000 -
4000 |
3000 -
2000
1000 -

L)
\
[T
\

.

[| §]
.

.

.
‘0
LI N
.
°
' ug
.
.

‘Q
HEE
’0

50
Input Size

100

Empirical Analysis of Time Efficiency

* Select a specific (typical) sample of inputs
e Use physical unit of time (e.g., milliseconds)
or

Count actual number of basic operation’s executions

* Analyze the empirical data

Limitations of Experiments

* Experimental evaluation of running time is very useful but

* It is necessary to implement the algorithm, which may be difficult (in terms of
time) and can be expensive

* Results may not be indicative of the running time on other inputs not
included in the experiment

* In order to compare two algorithms, the same hardware and software
environments must be used

How to (theoretically) calculate the running
time?

* Most algorithms transform input objects into output
objects

5[3[1[2]—| Sorting | 17235
algorithm

input object output object

= The running time of an algorithm typically grows with
the input size

= jdea: analyze running time as a function of input size

How to Calculate Running Time

* Problem: finds the first prime number in an array by
scanning it left to right

* Given an algorithm, running time can be very different
even on inputs of the same size,

5|13|1(2|8|4(|7|6

1146|853 |2|7

= Idea: analyze running time in the
= best case
= worst case
= average case

How to Calculate Running Time

* Best case running time is usually useless

* Average case time is very useful but often
difficult to determine

* We focus on the worst case running time

* Easier to analyze

* Crucial to applications such as games, finance
and robotics

120

100

80

60

40

20

M best case
M average case
B worst case

1000

2000 3000
Input Size

4000

Theoretical Analysis of Time Efficiency

* Time efficiency is analyzed by determining the number
of repetitions of the basic operation as a function of
input size

* Basic operation: the operation that contributes most
towards the running time of the algorithm

input size

7\

T(n) = c, C(n)

running time f Number of times basic
execution time for operation is executed
the basic operation

Input size and basic operation examples

Problem

Input size measure

Basic operation

Searching for a key in
a list of n items

Number of list’s items,
i.e. n

Key comparison

Multiplication of two
matrices

Matrix dimensions or
total number of elements

Multiplication of two
numbers

Checking primality of
a given integer n

n’size = number of digits
(in binary representation)

Division

Typical graph problem

#vertices and/or edges

Visiting a vertex or
traversing an edge

Review (slides from CSC 280):

* The following topics were covered in the past:
* Discuss the goals of software development with respect to efficiency
* Introduce the concept of algorithm analysis
* Explore the concept of asymptotic complexity

* Compare various growth functions

* We will review those topics and add depth to them

Analysis of Algorithms

* An aspect of software quality is the efficient use of resources,
including the CPU time and memory

* Algorithm analysis is a core computing topic
* It gives us a basis to compare the efficiency of algorithms

* Example: which sorting algorithm is more efficient?

Growth Functions

* Analysis is defined in general terms, based on:
* the problem size (ex: number of items to sort)
* key operation (ex: comparison of two values)

* A growth function shows the relationship between the size of the
problem (n) and the time it takes to solve the problem

* For example:
t(n) = 15n2+45n

Growth of Functions

How much (unit) time is needed for a problem size of N if you have the growth function: t(n) = 15n2+ 45n

Number of dishes (n) 15n2 45n 15n2 + 45n

1 15 45 60

2 60 90 150

5 375 225 600

10 1,500 450 1,950

100 150,000 4,500 154,500

1,000 15,000,000 45,000 15,045,000

10,000 1,500,000,000 450,000 1,500,450,000
100,000 150,000,000,000 4,500,000 150,004,500,000
1,000,000 15,000,000,000,000 45,000,000 15,000,045,000,000
10,000,000 1,500,000,000,000,000 450,000,000 1,500,000,450,000,000

FIGURE 2.1 Comparison of terms in growth function

Growth Functions

* It's not usually necessary to know the exact growth function

* The key issue is the asymptotic complexity of the function — how it
grows as n increases

* Determined by the dominant term in the growth function

 This is referred to as the order of the algorithm
* We often use Big-Oh notation to specify the order, such as O(n?)

Some growth functions and their asymptotic

complexity

Growth Function Order Label

t(n) =17 O(1) constant
t(n) = 3log n O(log n) logarithmic
t(n)=20n-4 O(n) linear

t(n) = 12nlog n + 100n O(nlogn) nlogn

t(n) = 3n?+ 5n -2 0(n?) quadratic
t(n) = 8n + 3n? 0(nd) cubic

t(n) = 2" + 18n° + 3n 0(2" exponential

FIGURE 2.2 Some growth functions and their asymptotic complexity

Key: ignore multiplicative constants
and the lower order terms

Do the growth functions really matter?

Is the following statement true?

e With the advances in the speed of processors and the availability of
large amounts of inexpensive memory, one can simply find a faster
CPU to overcome the inefficiency of algorithm.

Increase in problem size with a ten-fold
increase in processor speed

Algorithm | Time Complexity | Max Problem Size | Max Problem Size
Before Speedup | After Speedup

A n Sq 108,

B n? Sy 3.16s,
C n3 Sy 2.158,
D on 8, Sy + 3.3

FIGURE 2.3 Increase in problem size with a tenfold increase in processor speed

Comparison of typical growth functions for
small values of N

500 - . - -

400 -

Input Size (N)

FIGURE 2.4 Comparison of typical growth functions for small values of n

Comparison of typical growth functions for
large values of

200,000 = = i Py N

] .o
150,000 = & & . 4
' a

- | o’
50,000 = = & -
| .

o’..
.
......
.....

e~
1 100 200 300 400 500
Input Size (N)

FIGURE 2.5 Comparison of typical growth functions for large values of n

Analyzing Loop Execution

* A loop executes a certain number of times (say n)

* Thus the complexity of a loop is n times the complexity of the body of
the loop

* When loops are nested, the body of the outer loop includes the
complexity of the inner loop

Analyzing Loop Execution

* What is the time complexity of the following loop?
x=0;
for (int 1 = 0; 1 < n; 1++){

X X + 1;

}

* The time complexity of the loop is O(n) because the loop executes n
times and the body of the loop is O(1)

Analyzing Loop Execution

* What is the time complexity of the following loop?

for (int 1=0; i<n; 1i++) { ™)
Xx = x + 1; N
for (int j=0; Jj<n; J++) {
y =y - L
} v
) /

- O(n) > O(n)

* The time complexity of the loop is O(n?) because the loop executes n
times and the body of the loop, including a nested loop, is O(n)

Examples

* Find the sum of 1 to n. Does there exist a
int sum=0; better algorithm?
for (int 1=1; 1<=n; 1++) {

sum = sum + 1;

* The time complexity of the for loop is O(n)

Examples

* Find the sum of 1 to n. Does there exist a
int sum=0; better algorithm?
for (int 1=1; 1i<=n; 1++) {

sum = sum + 1; int sum = n*(n+1)/2;

* The time complexity of the for loop is O(n)
* The time complexity of the formula is O(1)

Analyzing Method Calls

* To analyze method calls, we simply replace the method call with the
order of the body of the method

* A call to the following method is O(1)

public vold printsum(int count)

{

sum = count* (count+l)/2;
System.out.println (sum) ;

More examples

* What is the time complexity of the following while loop?

while (count < n) { while (count < 2n) {
x =x + 1; X = X + 2;
count++; count++;

* The time complexity of the either while loop is O(n)

More examples

for (int count=0; count<n; count++) {
printsum(count) ;

public void printsum(int count) {
int sum=0;
for (int 1=0; i<count,; i++) {
sum = sum + 1i;
}

System.out.println (sum) ;

More examples

for (int count=0; count<n; count++) {
printsum(count) ;

public void printsum(int count) {
int sum=0;
for (int 1=0; i<count,; i++) {
sum = sum + 1i;
}

System.out.println (sum) ;

)

The time complexity is
O(n?)

Two Broad Classes of Analysis

* Nonrecursive Algorithms
* Recursive Algorithms

* These are “equivalent” in the sense that we can convert between
them:

* Recursive -> Nonrecursive: Simulate the recursion in a loop.
* Nonrecursive -> Recursive: Study functional programming.

Analyze the time efficiency of non-recursive

algorithms

* General Plan for Analysis

Decide on parameter n indicating input size

|ldentify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

* Set up a sum for the number of times the basic operation is executed
* Simplify the sum using standard formulas and rules

Example: Sequential search

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
/[Input: An array A[0..n — 1] and a search key K

* Worst case? //Output: The index of the first element of A that matches K

e Best case? /! or —1 if there are no matching elements
i <0
* Average case? while i < n and A[i]# K do
[<1+ 1

if i < n return ;
else return —1

Solution
° Cworst(n) =N

° Cbest(n) =1

b
n

_ 4, D p : p
*Cag(n)=1x=+2%—+ - +ix—+-+nx-+n(l-p)
=(1+n)*§+n(1—p)

—(1-"2 P
=(1—=2)*n+7

* p: the probability the key is in array A[1..n]

Useful summation formulas and rules

zlﬁiﬁul — 1+1+...—I_1 — Z/l - l+ 1
Inparticular /=1, u=n 2,1 =n-1+1=n € O(n)

Yicicnl = 112+, An=n(n+1)2 = n?/2 € O(n?)
Yicicy 12 = 12422+, +n? = n(n+1)2n+1)/6 =~ n’/3 € O(n?)

Yocicnd =1+a +...+a"=(@"*'-1)(a-1) foranya =1
In particular, Xy, 2" =29+ 21+, . +27" =271 -1 € ®(2")

2(a;x b;)=2a;+ 2b;
.ca; =c2a,;

Ziciculli = 2yciem@i T 2 1<i<cy i

Asymptotic order of growth

* O(g(n)): big oh
* The set of all functions with a smaller or same order of growth as g(n)
* Class of functions f(n) that grow no faster than g(n)

* ()(g(n)): big omega
* The set of functions with a larger or same order of growth as g(n)
* Class of functions f(n) that grow at least as fast as g(n)

* O(g(n)): big theta
* The set of all functions that have the same order of growth as g(n)
* class of functions f(n) that grow at same rate as g(n)

Big-oh
e {(n) <=cg(n) foralln>=ng

cg(n)
t{n)

doesn't
matter

A L e A s

0

Figure 2.1 Big-oh notation: ¢(n) € O(g(n))

f(n) that grow no faster than g(n)

cg(n)

f(n)

n

"0 fin) = 0@g(n))

Big-omega

® t(n) >= Cg(n) for all n >= No f(n) that grow at least as fast as g(n)

tn) f(n)

cg(n)

cg(n)

doesn't
matter

oF-—————- ——

> 7 L n

"0 f(n) = Qgn))

0

Fig. 2.2 Big-omega notation: t(n) € 2(g(n))

Big-theta

e C,g(n)<=t(n) <=c4g(n) foralln>=ng

f(n) that grow at same rate as g(n)

A | cg(n) (‘2\%’(’1)

| t(n)
; 6,9(n) £
| H
| cre(n)

doesnT:

matter |
-

n
Figure 2.3 Big-theta notation: t(n) € @(g(n)) no f (11) =) (g (n))

Example: Element unigueness problem

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
fori < Oton —2do

forj «—i+1ton—1do

if A[i]= A[/] return false

return true

What is t(n) = ?
What is the big theta of the algorithm? O(n?)

Example: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[O..n — 1, O0.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
//Output: Matrix C = AB

column 7

[a1 a2 a3 ... aip | [b1 b2 ... 1)1lj oo bin
row 2 — a1 a2 A3z ... (in . bil bf;)_ s n bij oo bm S
| Gnt Gn2 n3 ... Gun | | bnt bn2 ... |bnj|l ... ban |
(11 c12 ... €15 ... Cip |
= | a1 a2 CU q Cin entry on row 2

column j

Example: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0.n — 1, 0..n — 1], B[0..n — 1, O.n — 1])

//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
/[/Output: Matrix C = AB
fori < Oton—1do
for j <0ton—1do
C[i, j] < 0.0
fork < Oton—1do
Cli, j] < Cli, j1+ Ali, k] % Bk, J]

return C

Whatis t(n) =7
What is the big theta of the algorithm? O(n3)

Common time complexities

* Arranging the following time complexities from better to worst.
* O(n), O(n?), O(n3), O(1), Oflog n), O(n log n), O(2")

Common time complexities

BETTER

4 . O(1) constant time
* O(log n) log time
* O(n) linear time
* O(n log n) log linear time
* O(n?%) quadratic time
* O(n3) cubic time
e O(2") exponential time

WORSE

Math you need to review

= Summations (see CSC 210)
= Logarithms and Exponents

* properties of logarithms:

log,(xy) = logpx + log,y
log,, (x/y) = logyx - log,y
log,x® = alog,x

log,a = log,a/log,b

e properties of exponentials:
a(b+c) — aba C
abc — (ab)c
b=a Iogab
b¢ = 3 c*Iogab

When Do Logarithms Occur?

P Algorithms have a logarithmic term when they use a
divide and conquer technique

» the data keeps getting “divided by 2”

// input integer: n > 0
int foo(int n)
{
int total = 0;
while(n > 0)
{ n=mn/ 2;
total++;
}

return total;

Summary: Time efficiency of non-recursive
algorithms

* General Plan for Analysis

Decide on parameter n indicating input size
|dentify algorithm’s basic operation
Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify (or evaluate) the sum using standard formulas and
rules.

