The Evolution of
Cloud Computing




The Evolution of Cloud Computing

]
e From shared mainframes — virtualized data centers — cloud-native platforms

e Goal today: understand why cloud looks the way it does



Session Roadmap

The “shared computing” lineage: mainframes and time-sharing
The shift to distributed computing: PCs and client-server
Why on-prem got hard (cost, scale, operations)

The enablers: virtualization, commodity hardware, automation

The outcomes: [aaS, containers, orchestration, cloud economics



Overview: Cloud as an Evolution, Not an Invention

Cloud combines earlier ideas: sharing, abstraction, automation, metering
Enabled by fast networks + cheap hardware + software-defined infrastructure
Shifts the default: buy capacity — rent capability

Changes how teams build: self-service, APIs, rapid iteration

Sets up service models (IaaS/PaaS/SaaS) and deployment models
(public/private/hybrid)



What People Mean by “Cloud” (In Practical Terms)

On-demand resources: compute, storage, networking available quickly
Elasticity: scale up/down with workload rather than fixed capacity
Pay-for-use: cost tied to usage, not hardware ownership

Standard building blocks: VMs/containers, object storage, managed services

Operational shift: provider runs the platform; you run what you deploy on it



Why Start with History?

e “New” cloud ideas often have older ancestors (shared access, pooling, metering)

Helps separate: what’s genuinely new vs. what’s repackaged with better tooling

Explains design choices (multi-tenancy, automation, resiliency patterns)

Creates a timeline to understand service/deployment model tradeoffs



Recurring Themes Across the Timeline

Sharing: multiple users/applications share expensive resources efficiently
Abstraction: hide hardware complexity behind simpler interfaces
Automation: replace manual operations with repeatable processes/APIs
Standardization: common hardware/software patterns enable scale

Economics: cost, utilization, and speed push each major transition



Mainframes and Centralized Computing

Computers were rare, expensive, and centrally managed

Many users shared one machine; access via terminals

IT operated as a controlled utility (queues, quotas, scheduling)

Strong governance: performance, security, and change tightly managed

Compute treated as scarce capacity that must be allocated carefully



Mainframe Era: What It Got Right (and What It Limited)

S
e Strengths: high utilization, centralized control, consistent performance
e Operational model: specialized staff, formal processes, slow change
e Constraint: limited flexibility for experimentation and rapid deployment
e User experience: “request resources” rather than “self-serve resources”

e Connection to cloud: central pooling and managed access show up again later



Time-Sharing as a Precursor to the Cloud

]
e Multi-user systems let many people interact with one computer “at once”
e Introduced fairness concepts: slicing CPU time, prioritizing workloads
e Encouraged interactive computing (not just batch processing)

o Created early expectations of “computing as a shared service”



Time-Sharing: Proto-Cloud Concepts

Multi-tenancy: multiple users share the same underlying system
Metering/quotas: track usage, allocate capacity, prevent abuse
Isolation: keep users from interfering with each other’s work
Service mindset: reliability and availability become operational goals

Discussion prompt: Which of these show up directly in modern public cloud?

11



The Personal Computer Revolution

Computing moved from centralized machines to individual desktops
Lower cost hardware empowered departments and individuals
Innovation accelerated, but governance/control fragmented

New norm: local compute + local software installation

12



Client-Server: The Next Step After PCs

PCs became clients; shared services moved to servers (files, databases, apps)
Benefits: shared data, centralized services, more powerful backends

Costs: network dependence, server management, more moving parts
Scaling challenge: as users grew, server fleets and ops complexity grew too

Typical evolution: single server — multiple tiers — load balancing — clusters

13



The Cost and Complexity of On-Premises IT

You own everything: hardware, networking, power, cooling, physical space
You build processes: procurement, patching, monitoring, backups, security
You handle reliability: redundancy, disaster recovery, capacity planning

Slow feedback loops: buying hardware can take weeks/months

14



On-Prem Pain Points (Why Teams Looked for
A_Iternatives)

CapEx vs OpEx: large upfront purchases vs ongoing usage-based costs
Overprovisioning: buy for peak demand — idle capacity most of the time
Underprovisioning: buy too little - outages/performance issues
Environment drift: dev/test/prod differences create deployment risk

Ops bottlenecks: tickets and handoffs slow delivery

15



The Evolution of
Cloud Computing

Part 2

ECATHOLIC UNIVERSITY OF AMERICA




Virtualization Changes the Economics

Runs multiple virtual machines on one physical server
Improves utilization: consolidate workloads onto fewer machines
Decouples software from hardware: easier to move/replicate environments

Makes “resource pooling” practical in modern data centers



Virtualization: Why It’s a Cloud Enabler

Isolation: workloads separated even when sharing hardware
Encapsulation: VM images capture a system configuration
Flexibility: faster provisioning than racking physical servers
Mobility: migrate workloads between hosts for maintenance/failover

Bridge to cloud: standard units of compute that can be created on demand

18



Commodity Hardware at Massive Scale

Instead of specialized machines: lots of relatively inexpensive servers
Scale-out approach: add more nodes rather than “buy a bigger box”
Standardization simplifies procurement, replacement, and automation

Enables massive data centers built from repeatable building blocks

19



Hyperscale Operations: Designing for Failure

At large scale, failures are normal (disks, servers, networks)

o Reliability shifts from “perfect hardware” to “resilient software”
e Use redundancy, replication, and automation to recover quickly

e Operational focus: monitoring, incident response, and continuous
improvement

o Key idea: resilience becomes an architectural requirement, not an afterthought



2006: Infrastructure Becomes a Service (laa$)

Compute and storage offered as on-demand building blocks
Self-service replaces procurement cycles for many workloads
Resources become programmable (APIs), not just managed by tickets

Start of public cloud as a mainstream model for infrastructure consumption

21



What laaS Actually Provides (and What It
Iﬂesn’t)

Provides: VMs/compute, networking primitives, storage options

You still design: availability, security configuration, scaling strategy

Tradeoff: faster provisioning and flexibility, but new operational skills needed
Introduce “shared responsibility” idea (preview): provider vs customer duties

Example prompt: “What stays the same from on-prem? What fundamentally
changes?”

22



API-Driven and Automated Infrastructure

Infrastructure becomes software-controlled: create/modify via APIs
Repeatability: the same action can be executed consistently every time
Enables self-service portals and automation pipelines

Reduces manual configuration (and the errors that come with it)

23



Infrastructure as Gode (laCG) and the Ops
\ﬂ)rkflow Shift

Treat infrastructure definitions like source code (versioned, reviewed)
CI/CD concepts extend beyond apps to environments

Benefits: reproducibility, auditability, faster recovery and scaling
Cultural change: Dev + Ops collaboration and shared ownership

Common outcome: faster delivery with guardrails (policy, templates,
standards)

24



Containers: Lighter-Weight Abstraction

Package an application with its dependencies into a consistent unit
Shares the host OS kernel — often faster startup and higher density than VMs
Supports immutable deployment patterns (replace instead of patch-in-place)

Helps standardize “it runs the same everywhere” across environments

25



Containers vs. VMs (How to Explain the
Difference)

VM: virtualizes hardware; each VM has its own guest OS
Container: virtualizes at the OS level; isolates processes and dependencies
Practical impact: speed, density, and portability tradeoffs

Typical pattern: VMs as the substrate + containers on top (especially in public
cloud)

26



Orchestration and Gloud-Native Scale

As container counts grow, you need a “control plane” for operations
Orchestration handles scheduling, restarts, scaling, and placement
Moves deployments from “pets” to “cattle” (replaceable units)

Enables higher-level application patterns (services, rolling updates)

27



What Orchestrators Actually Do for You

Scheduling: decide where workloads run based on resource needs
Desired state: keep the system matching declared configuration
Service discovery & networking: connect components reliably
Autoscaling: adjust replicas/resources based on demand signals

Observability hooks: health checks, logs, metrics, rollout status

28



Economic Drivers of Cloud Adoption

Elasticity: match capacity to demand (avoid over/underprovisioning)
Efficiency: higher utilization via pooling and standardization
Speed: faster experimentation and deployment — faster time-to-value

Risk tradeoff: shift some operational burden to providers, but increase
dependency on good architecture/governance

29



Key Takeaways (and a Quick Check)

Cloud is the convergence of sharing + abstraction + automation + scale economics
Mainframes/time-sharing established core ideas (pooling, metering, managed access)
PCs/client-server increased flexibility but made operations and scaling harder
Virtualization + commodity hardware + APIs enabled [aaS and cloud-native platforms
Quick check questions:

o What's one “old” idea that cloud makes practical at global scale?

o What's one operational responsibility that doesn’t disappear in the cloud?

30



