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The Evolution of Cloud Computing

]
e From shared mainframes — virtualized data centers — cloud-native platforms

e Goal today: understand why cloud looks the way it does



Session Roadmap

The “shared computing” lineage: mainframes and time-sharing
The shift to distributed computing: PCs and client-server
Why on-prem got hard (cost, scale, operations)

The enablers: virtualization, commodity hardware, automation

The outcomes: [aaS, containers, orchestration, cloud economics



Overview: Cloud as an Evolution, Not an Invention

Cloud combines earlier ideas: sharing, abstraction, automation, metering
Enabled by fast networks + cheap hardware + software-defined infrastructure
Shifts the default: buy capacity — rent capability

Changes how teams build: self-service, APIs, rapid iteration

Sets up service models (IaaS/PaaS/SaaS) and deployment models
(public/private/hybrid)



What People Mean by “Cloud” (In Practical Terms)

On-demand resources: compute, storage, networking available quickly
Elasticity: scale up/down with workload rather than fixed capacity
Pay-for-use: cost tied to usage, not hardware ownership

Standard building blocks: VMs/containers, object storage, managed services

Operational shift: provider runs the platform; you run what you deploy on it



Why Start with History?

e “New” cloud ideas often have older ancestors (shared access, pooling, metering)

Helps separate: what’s genuinely new vs. what’s repackaged with better tooling

Explains design choices (multi-tenancy, automation, resiliency patterns)

Creates a timeline to understand service/deployment model tradeoffs



Recurring Themes Across the Timeline

Sharing: multiple users/applications share expensive resources efficiently
Abstraction: hide hardware complexity behind simpler interfaces
Automation: replace manual operations with repeatable processes/APIs
Standardization: common hardware/software patterns enable scale

Economics: cost, utilization, and speed push each major transition



Mainframes and Centralized Computing

Computers were rare, expensive, and centrally managed

Many users shared one machine; access via terminals

IT operated as a controlled utility (queues, quotas, scheduling)

Strong governance: performance, security, and change tightly managed

Compute treated as scarce capacity that must be allocated carefully



Mainframe Era: What It Got Right (and What It Limited)

S
e Strengths: high utilization, centralized control, consistent performance
e Operational model: specialized staff, formal processes, slow change
e Constraint: limited flexibility for experimentation and rapid deployment
e User experience: “request resources” rather than “self-serve resources”

e Connection to cloud: central pooling and managed access show up again later



Time-Sharing as a Precursor to the Cloud

]
e Multi-user systems let many people interact with one computer “at once”
e Introduced fairness concepts: slicing CPU time, prioritizing workloads
e Encouraged interactive computing (not just batch processing)

o Created early expectations of “computing as a shared service”



Time-Sharing: Proto-Cloud Concepts

Multi-tenancy: multiple users share the same underlying system
Metering/quotas: track usage, allocate capacity, prevent abuse
Isolation: keep users from interfering with each other’s work
Service mindset: reliability and availability become operational goals

Discussion prompt: Which of these show up directly in modern public cloud?
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The Personal Computer Revolution

Computing moved from centralized machines to individual desktops
Lower cost hardware empowered departments and individuals
Innovation accelerated, but governance/control fragmented

New norm: local compute + local software installation
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Client-Server: The Next Step After PCs

PCs became clients; shared services moved to servers (files, databases, apps)
Benefits: shared data, centralized services, more powerful backends

Costs: network dependence, server management, more moving parts
Scaling challenge: as users grew, server fleets and ops complexity grew too

Typical evolution: single server — multiple tiers — load balancing — clusters
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The Cost and Complexity of On-Premises IT

You own everything: hardware, networking, power, cooling, physical space
You build processes: procurement, patching, monitoring, backups, security
You handle reliability: redundancy, disaster recovery, capacity planning

Slow feedback loops: buying hardware can take weeks/months
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On-Prem Pain Points (Why Teams Looked for
A_Iternatives)

CapEx vs OpEx: large upfront purchases vs ongoing usage-based costs
Overprovisioning: buy for peak demand — idle capacity most of the time
Underprovisioning: buy too little - outages/performance issues
Environment drift: dev/test/prod differences create deployment risk

Ops bottlenecks: tickets and handoffs slow delivery

15



The Evolution of
Cloud Computing

Part 2

ECATHOLIC UNIVERSITY OF AMERICA




Virtualization Changes the Economics

Runs multiple virtual machines on one physical server
Improves utilization: consolidate workloads onto fewer machines
Decouples software from hardware: easier to move/replicate environments

Makes “resource pooling” practical in modern data centers



Virtualization: Why It’s a Cloud Enabler

Isolation: workloads separated even when sharing hardware
Encapsulation: VM images capture a system configuration
Flexibility: faster provisioning than racking physical servers
Mobility: migrate workloads between hosts for maintenance/failover

Bridge to cloud: standard units of compute that can be created on demand
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Commodity Hardware at Massive Scale

Instead of specialized machines: lots of relatively inexpensive servers
Scale-out approach: add more nodes rather than “buy a bigger box”
Standardization simplifies procurement, replacement, and automation

Enables massive data centers built from repeatable building blocks
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Hyperscale Operations: Designing for Failure

At large scale, failures are normal (disks, servers, networks)

o Reliability shifts from “perfect hardware” to “resilient software”
e Use redundancy, replication, and automation to recover quickly

e Operational focus: monitoring, incident response, and continuous
improvement

o Key idea: resilience becomes an architectural requirement, not an afterthought



2006: Infrastructure Becomes a Service (laa$)

Compute and storage offered as on-demand building blocks
Self-service replaces procurement cycles for many workloads
Resources become programmable (APIs), not just managed by tickets

Start of public cloud as a mainstream model for infrastructure consumption
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What laaS Actually Provides (and What It
Iﬂesn’t)

Provides: VMs/compute, networking primitives, storage options

You still design: availability, security configuration, scaling strategy

Tradeoff: faster provisioning and flexibility, but new operational skills needed
Introduce “shared responsibility” idea (preview): provider vs customer duties

Example prompt: “What stays the same from on-prem? What fundamentally
changes?”
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API-Driven and Automated Infrastructure

Infrastructure becomes software-controlled: create/modify via APIs
Repeatability: the same action can be executed consistently every time
Enables self-service portals and automation pipelines

Reduces manual configuration (and the errors that come with it)
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Infrastructure as Gode (laCG) and the Ops
\ﬂ)rkflow Shift

Treat infrastructure definitions like source code (versioned, reviewed)
CI/CD concepts extend beyond apps to environments

Benefits: reproducibility, auditability, faster recovery and scaling
Cultural change: Dev + Ops collaboration and shared ownership

Common outcome: faster delivery with guardrails (policy, templates,
standards)
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Containers: Lighter-Weight Abstraction

Package an application with its dependencies into a consistent unit
Shares the host OS kernel — often faster startup and higher density than VMs
Supports immutable deployment patterns (replace instead of patch-in-place)

Helps standardize “it runs the same everywhere” across environments
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Containers vs. VMs (How to Explain the
Difference)

VM: virtualizes hardware; each VM has its own guest OS
Container: virtualizes at the OS level; isolates processes and dependencies
Practical impact: speed, density, and portability tradeoffs

Typical pattern: VMs as the substrate + containers on top (especially in public
cloud)
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Orchestration and Gloud-Native Scale

As container counts grow, you need a “control plane” for operations
Orchestration handles scheduling, restarts, scaling, and placement
Moves deployments from “pets” to “cattle” (replaceable units)

Enables higher-level application patterns (services, rolling updates)
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What Orchestrators Actually Do for You

Scheduling: decide where workloads run based on resource needs
Desired state: keep the system matching declared configuration
Service discovery & networking: connect components reliably
Autoscaling: adjust replicas/resources based on demand signals

Observability hooks: health checks, logs, metrics, rollout status
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Economic Drivers of Cloud Adoption

Elasticity: match capacity to demand (avoid over/underprovisioning)
Efficiency: higher utilization via pooling and standardization
Speed: faster experimentation and deployment — faster time-to-value

Risk tradeoff: shift some operational burden to providers, but increase
dependency on good architecture/governance
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Key Takeaways (and a Quick Check)

Cloud is the convergence of sharing + abstraction + automation + scale economics
Mainframes/time-sharing established core ideas (pooling, metering, managed access)
PCs/client-server increased flexibility but made operations and scaling harder
Virtualization + commodity hardware + APIs enabled [aaS and cloud-native platforms
Quick check questions:

o What's one “old” idea that cloud makes practical at global scale?

o What's one operational responsibility that doesn’t disappear in the cloud?
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