
The Evolution of 
Cloud Computing

Part 1



The Evolution of Cloud Computing
● From shared mainframes → virtualized data centers → cloud-native platforms

● Goal today: understand why cloud looks the way it does

2



Session Roadmap
● The “shared computing” lineage: mainframes and time-sharing

● The shift to distributed computing: PCs and client–server

● Why on-prem got hard (cost, scale, operations)

● The enablers: virtualization, commodity hardware, automation

● The outcomes: IaaS, containers, orchestration, cloud economics

3
3



Overview: Cloud as an Evolution, Not an Invention
● Cloud combines earlier ideas: sharing, abstraction, automation, metering

● Enabled by fast networks + cheap hardware + software-defined infrastructure

● Shifts the default: buy capacity → rent capability

● Changes how teams build: self-service, APIs, rapid iteration

● Sets up service models (IaaS/PaaS/SaaS) and deployment models 
(public/private/hybrid)

4



What People Mean by “Cloud” (In Practical Terms)
● On-demand resources: compute, storage, networking available quickly

● Elasticity: scale up/down with workload rather than fixed capacity

● Pay-for-use: cost tied to usage, not hardware ownership

● Standard building blocks: VMs/containers, object storage, managed services

● Operational shift: provider runs the platform; you run what you deploy on it

5
5



Why Start with History?
● “New” cloud ideas often have older ancestors (shared access, pooling, metering)

● Helps separate: what’s genuinely new vs. what’s repackaged with better tooling

● Explains design choices (multi-tenancy, automation, resiliency patterns)

● Creates a timeline to understand service/deployment model tradeoffs

6



Recurring Themes Across the Timeline
● Sharing: multiple users/applications share expensive resources efficiently

● Abstraction: hide hardware complexity behind simpler interfaces

● Automation: replace manual operations with repeatable processes/APIs

● Standardization: common hardware/software patterns enable scale

● Economics: cost, utilization, and speed push each major transition

7
7



Mainframes and Centralized Computing
● Computers were rare, expensive, and centrally managed

● Many users shared one machine; access via terminals

● IT operated as a controlled utility (queues, quotas, scheduling)

● Strong governance: performance, security, and change tightly managed

● Compute treated as scarce capacity that must be allocated carefully

8
8



Mainframe Era: What It Got Right (and What It Limited)

● Strengths: high utilization, centralized control, consistent performance

● Operational model: specialized staff, formal processes, slow change

● Constraint: limited flexibility for experimentation and rapid deployment

● User experience: “request resources” rather than “self-serve resources”

● Connection to cloud: central pooling and managed access show up again later

9



Time-Sharing as a Precursor to the Cloud
● Multi-user systems let many people interact with one computer “at once”

● Introduced fairness concepts: slicing CPU time, prioritizing workloads

● Encouraged interactive computing (not just batch processing)

● Created early expectations of “computing as a shared service”

10
10



Time-Sharing: Proto-Cloud Concepts
● Multi-tenancy: multiple users share the same underlying system

● Metering/quotas: track usage, allocate capacity, prevent abuse

● Isolation: keep users from interfering with each other’s work

● Service mindset: reliability and availability become operational goals

● Discussion prompt: Which of these show up directly in modern public cloud?

11
11



The Personal Computer Revolution
● Computing moved from centralized machines to individual desktops

● Lower cost hardware empowered departments and individuals

● Innovation accelerated, but governance/control fragmented

● New norm: local compute + local software installation

12



Client–Server: The Next Step After PCs
● PCs became clients; shared services moved to servers (files, databases, apps)

● Benefits: shared data, centralized services, more powerful backends

● Costs: network dependence, server management, more moving parts

● Scaling challenge: as users grew, server fleets and ops complexity grew too

● Typical evolution: single server → multiple tiers → load balancing → clusters

13
13



The Cost and Complexity of On-Premises IT
● You own everything: hardware, networking, power, cooling, physical space

● You build processes: procurement, patching, monitoring, backups, security

● You handle reliability: redundancy, disaster recovery, capacity planning

● Slow feedback loops: buying hardware can take weeks/months

14



On-Prem Pain Points (Why Teams Looked for 
Alternatives)
● CapEx vs OpEx: large upfront purchases vs ongoing usage-based costs

● Overprovisioning: buy for peak demand → idle capacity most of the time

● Underprovisioning: buy too little → outages/performance issues

● Environment drift: dev/test/prod differences create deployment risk

● Ops bottlenecks: tickets and handoffs slow delivery

15



The Evolution of 
Cloud Computing

Part 2

16



Virtualization Changes the Economics
● Runs multiple virtual machines on one physical server

● Improves utilization: consolidate workloads onto fewer machines

● Decouples software from hardware: easier to move/replicate environments

● Makes “resource pooling” practical in modern data centers



Virtualization: Why It’s a Cloud Enabler
● Isolation: workloads separated even when sharing hardware

● Encapsulation: VM images capture a system configuration

● Flexibility: faster provisioning than racking physical servers

● Mobility: migrate workloads between hosts for maintenance/failover

● Bridge to cloud: standard units of compute that can be created on demand

18



Commodity Hardware at Massive Scale
● Instead of specialized machines: lots of relatively inexpensive servers

● Scale-out approach: add more nodes rather than “buy a bigger box”

● Standardization simplifies procurement, replacement, and automation

● Enables massive data centers built from repeatable building blocks

19



Hyperscale Operations: Designing for Failure
● At large scale, failures are normal (disks, servers, networks)

● Reliability shifts from “perfect hardware” to “resilient software”

● Use redundancy, replication, and automation to recover quickly

● Operational focus: monitoring, incident response, and continuous 
improvement

● Key idea: resilience becomes an architectural requirement, not an afterthought

20



2006: Infrastructure Becomes a Service (IaaS)
● Compute and storage offered as on-demand building blocks

● Self-service replaces procurement cycles for many workloads

● Resources become programmable (APIs), not just managed by tickets

● Start of public cloud as a mainstream model for infrastructure consumption

21



What IaaS Actually Provides (and What It 
Doesn’t)
● Provides: VMs/compute, networking primitives, storage options

● You still design: availability, security configuration, scaling strategy

● Tradeoff: faster provisioning and flexibility, but new operational skills needed

● Introduce “shared responsibility” idea (preview): provider vs customer duties

● Example prompt: “What stays the same from on-prem? What fundamentally 
changes?”

22



API-Driven and Automated Infrastructure
● Infrastructure becomes software-controlled: create/modify via APIs

● Repeatability: the same action can be executed consistently every time

● Enables self-service portals and automation pipelines

● Reduces manual configuration (and the errors that come with it)

23



Infrastructure as Code (IaC) and the Ops 
Workflow Shift
● Treat infrastructure definitions like source code (versioned, reviewed)

● CI/CD concepts extend beyond apps to environments

● Benefits: reproducibility, auditability, faster recovery and scaling

● Cultural change: Dev + Ops collaboration and shared ownership

● Common outcome: faster delivery with guardrails (policy, templates, 
standards)

24



Containers: Lighter-Weight Abstraction
● Package an application with its dependencies into a consistent unit

● Shares the host OS kernel → often faster startup and higher density than VMs

● Supports immutable deployment patterns (replace instead of patch-in-place)

● Helps standardize “it runs the same everywhere” across environments

25



Containers vs. VMs (How to Explain the 
Difference)
● VM: virtualizes hardware; each VM has its own guest OS

● Container: virtualizes at the OS level; isolates processes and dependencies

● Practical impact: speed, density, and portability tradeoffs

● Typical pattern: VMs as the substrate + containers on top (especially in public 
cloud)

26



Orchestration and Cloud-Native Scale
● As container counts grow, you need a “control plane” for operations

● Orchestration handles scheduling, restarts, scaling, and placement

● Moves deployments from “pets” to “cattle” (replaceable units)

● Enables higher-level application patterns (services, rolling updates)

27



What Orchestrators Actually Do for You
● Scheduling: decide where workloads run based on resource needs

● Desired state: keep the system matching declared configuration

● Service discovery & networking: connect components reliably

● Autoscaling: adjust replicas/resources based on demand signals

● Observability hooks: health checks, logs, metrics, rollout status

28



Economic Drivers of Cloud Adoption
● Elasticity: match capacity to demand (avoid over/underprovisioning)

● Efficiency: higher utilization via pooling and standardization

● Speed: faster experimentation and deployment → faster time-to-value

● Risk tradeoff: shift some operational burden to providers, but increase 
dependency on good architecture/governance

29



Key Takeaways (and a Quick Check)
● Cloud is the convergence of sharing + abstraction + automation + scale economics

● Mainframes/time-sharing established core ideas (pooling, metering, managed access)

● PCs/client-server increased flexibility but made operations and scaling harder

● Virtualization + commodity hardware + APIs enabled IaaS and cloud-native platforms

● Quick check questions:

○ What’s one “old” idea that cloud makes practical at global scale?

○ What’s one operational responsibility that doesn’t disappear in the cloud?

30


