
Cloud Service Models

Part 1

Cloud Service Models (Why They Matter)
● Cloud services differ by level of abstraction

● Each model shifts responsibility between provider and customer

● The trade-off space: control vs flexibility vs operational effort

● Model choice impacts architecture, cost, and security decisions

2

Roadmap and Learning Objectives
● Define “service model” and interpret the stack layers

● Understand IaaS responsibilities (what you run vs what the provider runs)

● Build a decision lens for choosing between IaaS/PaaS/SaaS/FaaS

● Preview: shared responsibility and security implications

3
3

What Is a Cloud Service Model?
● A service model defines what the provider manages vs what the user manages

● It organizes cloud offerings into layers

● Higher layers = less operational responsibility

● Lower layers = more control and customization

4

The Stack: From Hardware to Application
● Hardware + networking at the base

● OS, runtime, middleware in the middle

● Applications + data at the top

● Service models differ in how much of this stack you manage

5
5

A Practical Way to Think About Models
● Ask: “Which layer(s) am I responsible for operating day-to-day?”

● Separate building vs running: dev effort vs ops effort

● Identify the “undifferentiated heavy lifting” you can offload

● Decide where standardization is acceptable vs where customization is required

6

The Four Common Service Models (At a Glance)
● IaaS: provider gives compute/storage/network; you manage OS→apps

● PaaS: provider manages OS/runtime/middleware; you focus on code

● SaaS: provider delivers the whole application

● FaaS: event-driven functions; “no visible server management”

7
7

Infrastructure as a Service (IaaS): Definition
● Provider supplies compute, storage, and networking

● Customer manages OS, runtime, and applications

● Closest to traditional data centers

● High control, higher operational burden

8
8

IaaS: What You Get (Common Building Blocks)
● Virtual machines / instance types (CPU, memory, GPU)

● Virtual networking (VPC/VNet, subnets, routing, firewalls)

● Storage options (block, object, file) + snapshots/backup primitives

● Load balancing and basic autoscaling capabilities (provider tools; you configure)

9

What You Manage in IaaS (Expanded)
● OS installation and patching

● Security configuration and updates

● Scaling and availability planning

● Full responsibility for applications and data

● Operational necessities: monitoring, logging, incident response, runbooks

10
10

IaaS Availability: What “You Still Design”
● Redundancy across zones/regions (where required)

● Health checks + load balancing behavior (routing, failover)

● Backup/restore strategy and recovery objectives (RTO/RPO)

● Capacity planning vs autoscaling (and when each is appropriate)

11
11

IaaS Security: What Changes vs On-Prem
● You still own configuration risk (misconfigurations are a top failure mode)

● Identity and access design becomes foundational (least privilege, roles)

● Network segmentation is software-defined (security groups/NACLs)

● Patch cadence and vulnerability management remain your responsibility

12

IaaS Cost Drivers (Typical)
● “Always-on” compute (baseline instances) vs elastic scaling

● Storage growth + snapshots/backups + cross-region replication

● Data transfer and egress (especially multi-region and internet delivery)

● Operational overhead: time spent on OS/security/availability work

13
13

IaaS Fit: When It’s Usually the Right Choice
● You need OS-level control, custom networking, or custom middleware

● Legacy workloads that aren’t ready for platform constraints

● Specialized requirements (appliances, niche runtimes, bespoke controls)

● You have (or can build) the operational capability to run it reliably

14

Cloud Service
Models
Part 2

15

Platform as a Service (PaaS): Definition
● Provider manages OS, runtime, and middleware

● Developers focus on application code

● Built-in scaling and availability (within platform options)

● Reduced operational complexity

What PaaS Typically Includes (So You Don’t Have
To)
● Managed runtimes (language/framework runtime versions)

● Managed middleware (web servers, app hosting, job schedulers)

● Managed data services (often as companions: SQL/NoSQL/queues/caches)

● Platform features: deployments, rollbacks, health checks, autoscaling hooks

17

PaaS Benefits: Why Teams Choose It
● Faster development and deployment

● Standardized environments reduce “works on my machine”

● Less time spent on patching and base OS hardening

● Easier scaling for typical web/API workloads (with platform constraints)

18

Trade-offs of PaaS (And How to Manage Them)
● Less control over environment details

● Opinionated platforms may limit customization

● Potential vendor lock-in

● Mitigations: portable runtimes, clear interfaces, data portability plans, exit
strategy

19

SaaS: Definition
● Complete applications delivered over the internet

● Provider manages everything except user data and access

● No infrastructure or platform management for the customer

● Most familiar cloud model to end users

20

SaaS: What You Still Have to Operate
● Identity, access, and governance (roles, MFA/SSO, lifecycle)

● Data classification, retention, and eDiscovery requirements

● Integrations (APIs, webhooks, ETL), and their reliability

● Vendor management: SLAs, compliance evidence, incident communications

21

When SaaS Makes Sense (Use Cases + Signals)
● Standardized business functions (email, CRM, collaboration)

● Minimal IT staff required

● Rapid onboarding and updates

● Least flexibility, lowest operational burden

22

SaaS Selection Checklist (Architecture View)
● Data residency and compliance fit (where data lives, audit controls)

● Identity integration (SSO, SCIM, role models)

● Export/backup options and offboarding path (avoid “data hostage” risk)

● Extensibility: APIs, workflow automation, eventing

● Availability and support model aligned to business criticality

23

Function as a Service (FaaS): Definition
● Event-driven execution of small functions

● No server management visible to the user

● Automatic scaling to zero or high demand

● Example: AWS Lambda

24

How Serverless Works (Conceptually)
● Triggers: events (HTTP requests, queue messages, file uploads, schedules)

● Short-lived compute units: stateless by default; state externalized

● Concurrency scaling: many instances in parallel when demand spikes

● Pricing aligned to execution time/requests (vs always-on servers)

25

Serverless Trade-offs (And Typical Mitigations)
● Great for bursty or unpredictable workloads

● Pay only for execution time

● Limited execution time and environment control

● Debugging and observability can be harder

● Mitigations: structured logging, tracing, local emulation, clear event contracts

26

Comparing Control vs Responsibility (Summary
Slide)
● IaaS: maximum control, maximum responsibility

● PaaS: balanced control and convenience

● SaaS: minimal control, minimal effort

● FaaS: extreme abstraction, event-focused logic

● Practical lens: “What do you want to customize?” vs “What do you want to
avoid operating?”

27

Shared Responsibility and Security
● Responsibility shifts with the service model

● Provider always secures the underlying infrastructure

● Customers remain responsible for data and access

● Model choice affects compliance, auditing, and risk

● “Security work” moves upward: fewer servers to patch, more identity/data
governance to get right

28

Wrap-Up: A Simple Decision Framework
● Step 1: Identify what must be customized (OS? runtime? app features?)

● Step 2: Identify what must be controlled (latency, residency, compliance,
integration)

● Step 3: Quantify ops capacity (who patches/monitors/responds?)

● Step 4: Choose the highest abstraction that still meets constraints

● Step 5: Document shared responsibility boundaries (data, access, config,
incident response)

29

