Cloud Service Models

Part 1

Cloud Service Models (Why They Matter)

Cloud services differ by level of abstraction
Each model shifts responsibility between provider and customer
The trade-off space: control vs flexibility vs operational effort

Model choice impacts architecture, cost, and security decisions

Roadmap and Learning Objectives

]
e Define “service model” and interpret the stack layers
e Understand IaaS responsibilities (what you run vs what the provider runs)
e Build a decision lens for choosing between IaaS/PaaS/SaaS/FaaS

e Preview: shared responsibility and security implications

What Is a Cloud Service Model?

E—
e A service model defines what the provider manages vs what the user manages
e It organizes cloud offerings into layers
e Higher layers = less operational responsibility

e Lower layers = more control and customization

The Stack: From Hardware to Application

—
e Hardware + networking at the base
e OS, runtime, middleware in the middle
e Applications + data at the top

e Service models differ in how much of this stack you manage

A Practical Way to Think About Models

—
e Ask: “Which layer(s) am I responsible for operating day-to-day?”
e Separate building vs running: dev effort vs ops effort
e Identify the “undifferentiated heavy lifting” you can offload

e Decide where standardization is acceptable vs where customization is required

The Four Common Service Models (At a Glance)

[aaS: provider gives compute/storage/network; you manage OS—apps
PaaS: provider manages OS/runtime/middleware; you focus on code
SaaS: provider delivers the whole application

FaaS: event-driven functions; “no visible server management”

Infrastructure as a Service (laaS): Definition

]
e Provider supplies compute, storage, and networking
e Customer manages OS, runtime, and applications
e Closest to traditional data centers

e High control, higher operational burden

laaS: What You Get (Common Building Blocks)

Virtual machines / instance types (CPU, memory, GPU)
Virtual networking (VPC/VNet, subnets, routing, firewalls)
Storage options (block, object, file) + snapshots/backup primitives

Load balancing and basic autoscaling capabilities (provider tools; you configure)

What You Manage in laa$S (Expanded)

OS installation and patching

Security configuration and updates

Scaling and availability planning

Full responsibility for applications and data

Operational necessities: monitoring, logging, incident response, runbooks

10

laaS Availability: What “You Still Design”

Redundancy across zones/regions (where required)
Health checks + load balancing behavior (routing, failover)
Backup/restore strategy and recovery objectives (RTO/RPO)

Capacity planning vs autoscaling (and when each is appropriate)

11

laaS Security: What Changes vs On-Prem

You still own configuration risk (misconfigurations are a top failure mode)
Identity and access design becomes foundational (least privilege, roles)
Network segmentation is software-defined (security groups/NACLs)

Patch cadence and vulnerability management remain your responsibility

12

laaS Cost Drivers (Typical)

“Always-on” compute (baseline instances) vs elastic scaling

Storage growth + snapshots/backups + cross-region replication

Data transfer and egress (especially multi-region and internet delivery)

Operational overhead: time spent on OS/security/availability work

13

laaS Fit: When It’s Usually the Right Choice

You need OS-level control, custom networking, or custom middleware
Legacy workloads that aren’t ready for platform constraints
Specialized requirements (appliances, niche runtimes, bespoke controls)

You have (or can build) the operational capability to run it reliably

14

Cloud Service
Models

Part 2

ECATHOLIC UNIVERSITY OF AMERICA

Platform as a Service (Paa$S): Definition

]
e Provider manages OS, runtime, and middleware
e Developers focus on application code
e Built-in scaling and availability (within platform options)

e Reduced operational complexity

What PaaS Typically Includes (So You Don’t Have
To)

Managed runtimes (language/framework runtime versions)
Managed middleware (web servers, app hosting, job schedulers)
Managed data services (often as companions: SQL/NoSQL/queues/caches)

Platform features: deployments, rollbacks, health checks, autoscaling hooks

17

Paa$ Benefits: Why Teams Choose It

Faster development and deployment
Standardized environments reduce “works on my machine”
Less time spent on patching and base OS hardening

Easier scaling for typical web/API workloads (with platform constraints)

18

Trade-offs of PaaS (And How to Manage Them)

Less control over environment details
Opinionated platforms may limit customization
Potential vendor lock-in

Mitigations: portable runtimes, clear interfaces, data portability plans, exit
strategy

19

Saa$: Definition

Complete applications delivered over the internet
Provider manages everything except user data and access
No infrastructure or platform management for the customer

Most familiar cloud model to end users

20

Saa$S: What You Still Have to Operate

Identity, access, and governance (roles, MFA/SSO, lifecycle)
Data classification, retention, and eDiscovery requirements
Integrations (APIs, webhooks, ETL), and their reliability

Vendor management: SLAs, compliance evidence, incident communications

21

When SaaS Makes Sense (Use Gases + Signals)

e Standardized business functions (email, CRM, collaboration)
e Minimal IT staff required
e Rapid onboarding and updates

o Least flexibility, lowest operational burden

Saa$S Selection Checklist (Architecture View)

Data residency and compliance fit (where data lives, audit controls)
Identity integration (SSO, SCIM, role models)

Export/backup options and offboarding path (avoid “data hostage” risk)
Extensibility: APIs, workflow automation, eventing

Availability and support model aligned to business criticality

23

Function as a Service (FaaS): Definition

]
e Event-driven execution of small functions
e No server management visible to the user

e Automatic scaling to zero or high demand

e Example: AWS Lambda

How Serverless Works (Conceptually)

Triggers: events (HT TP requests, queue messages, file uploads, schedules)
Short-lived compute units: stateless by default; state externalized
Concurrency scaling: many instances in parallel when demand spikes

Pricing aligned to execution time/requests (vs always-on servers)

25

Serverless Trade-offs (And Typical Mitigations)

Great for bursty or unpredictable workloads

Pay only for execution time

Limited execution time and environment control
Debugging and observability can be harder

Mitigations: structured logging, tracing, local emulation, clear event contracts

26

Comparing Gontrol vs Responsibility (Summary
Sﬂde)

[aaS: maximum control, maximum responsibility
PaaS: balanced control and convenience

SaaS: minimal control, minimal effort

FaaS: extreme abstraction, event-focused logic

Practical lens: “What do you want to customize?” vs “What do you want to
avoid operating?”

27

Shared Responsibility and Security

Responsibility shifts with the service model

Provider always secures the underlying infrastructure
Customers remain responsible for data and access
Model choice affects compliance, auditing, and risk

“Security work” moves upward: fewer servers to patch, more identity/data
governance to get right

28

Wrap-Up: A Simple Decision Framework

Step 1: Identify what must be customized (OS? runtime? app features?)

Step 2: Identify what must be controlled (latency, residency, compliance,
integration)

Step 3: Quantify ops capacity (who patches/monitors/responds?)
Step 4: Choose the highest abstraction that still meets constraints

Step 5: Document shared responsibility boundaries (data, access, config,
incident response)

29

