
Hardware 
Virtualization 
Principles



What Is Virtualization?

● Virtualization allows multiple isolated operating systems to run on a single 
physical machine

● Each VM behaves as if it has dedicated hardware
● Enabled by a software layer called a hypervisor
● Core goal: isolation + efficient resource sharing

2



Why Virtualization Matters
● Improves hardware utilization through consolidation
● Enables workload portability across machines and data centers
● Provides fault isolation between workloads
● Foundation for modern cloud computing platforms

3



The Role of the Hypervisor
● Hypervisor mediates access to CPU, memory, and devices
● Presents virtual hardware abstractions to guest operating systems
● Enforces isolation boundaries between VMs
● Schedules and multiplexes physical resources

4



Hypervisors vs. Traditional Operating Systems
● Traditional OS: manages hardware on behalf of user processes
● Hypervisor: manages hardware on behalf of entire operating systems
● OS assumes it is the sole owner of the machine
● Hypervisor must safely multiplex ownership across multiple guests
● Design priority shifts from fair process scheduling to strong isolation
● Minimalism: many hypervisors expose fewer services than general-purpose 

OSes
● Security model treats guest OSes as untrusted workloads

5



Common Hypervisor Implementations
● Closed / Commercial Hypervisors

○ VMware ESXi
■ Widely used in enterprise and private clouds
■ Mature tooling, strong ecosystem, proprietary licensing

○ Microsoft Hyper-V
■ Integrated with Windows Server and Azure

○ Common in Microsoft-centric enterprise environments
● Open-Source Hypervisors

○ KVM (Kernel-based Virtual Machine)
■ Built directly into the Linux kernel
■ Foundation for many public clouds (via Linux-based stacks)

○ Xen
■ Early cloud hypervisor with strong isolation model
■ Historically used by large providers; still relevant in specialized contexts

6



Example: KVM
● QEMU is an emulator.
● Amazingly, this setup can 

still lead to near-native 
performance.

7https://ubuntu.com/blog/kvm-hyphervisor



Hardware Requirements for Virtualization
● CPU must explicitly support guest vs. host execution modes
● Intel VT-x (VMX) and AMD-V (SVM) add hardware-managed virtualization states
● Sensitive and privileged instructions must trap automatically when executed by a 

guest
● Hardware must provide controlled entry and exit between guest and hypervisor
● Memory subsystem must support nested address translation

○ Intel: Extended Page Tables (EPT)
○ AMD: Nested Page Tables (NPT / RVI)

● Interrupts, timers, and exceptions must be virtualizable without guest awareness

8



Privilege Rings and CPU Modes
● CPUs provide multiple privilege levels (rings)
● Traditional OS runs kernel in highest privilege level
● Virtualization introduces an additional control layer
● Hardware support (e.g., VMX/SVM) enables safe trapping

9



Where Does the Hypervisor Sit?
● Fundamental design choice: does the hypervisor 

run on bare hardware or on top of an OS?
● Determines how hardware access, drivers, and 

scheduling are handled
● Affects performance, security boundaries, and 

system complexity
● Leads to two architectures:

○ Bare-metal hypervisors (direct hardware 
control)

○ Hosted hypervisors (hypervisor as an 
application)

10
https://en.wikipedia.org/wiki/Hypervisor



Type 1 (Bare-Metal) Hypervisors
● Run directly on physical hardware
● No host operating system underneath
● Examples: enterprise and cloud hypervisors
● Advantages: performance, security, scalability

11



Type 2 (Hosted) Hypervisors
● Run on top of a general-purpose host OS
● Host OS manages hardware and device drivers
● Common in desktop and development use
● Easier to install, higher overhead

12



Comparing Type 1 vs. Type 2
● Type 1: production cloud, strong isolation, lower latency
● Type 2: development, testing, convenience-focused
● Difference is architectural, not just performance
● Cloud platforms almost exclusively use Type 1

13



What Hardware Resources Must Be Virtualized?
● CPU: execution state, privilege levels, and scheduling
● Memory: address spaces, isolation, and translation
● Storage: disks presented as virtual block devices
● Networking: virtual NICs, MAC/IP isolation, traffic control
● Devices: timers, interrupts, and I/O peripherals
● Hypervisor must virtualize each resource independently while preserving 

the illusion of a full machine
● Weakness in any layer can compromise isolation or performance

14



Memory Virtualization: The Problem
● Guest OS assumes direct control over physical memory
● Multiple VMs must coexist without interference
● Hypervisor must translate guest memory addresses
● Requires an additional level of indirection

15



Page Tables: Why They Matter for Virtualization
● Page tables map virtual addresses used by software to physical memory 

locations
● Modern OSes already rely on page tables for process isolation and protection
● Virtualization adds an extra layer:

○ Guest OS believes it manages “physical” memory
○ Hypervisor must map guest-physical memory to real machine memory

● This creates a two-level translation problem
● Efficient memory virtualization depends on hardware-assisted paging support
● Page tables are the foundation that makes memory isolation possible across 

VMs

16



Shadow Page Tables and EPT
● Early approach: hypervisor-maintained shadow page tables
● High overhead due to frequent updates
● Modern CPUs support nested paging (EPT/NPT)
● Hardware-assisted memory translation reduces overhead

17



Device Virtualization and I/O
● Physical devices cannot be safely shared directly
● Hypervisor exposes virtual devices to guests
● I/O requests must be mediated or forwarded
● Often a major source of virtualization overhead

18



Paravirtualized I/O
● Guest OS cooperates with the hypervisor
● Uses specialized drivers instead of emulated hardware
● Reduces context switches and emulation cost
● Common for network and storage devices

19



GPU Virtualization
● GPUs are stateful, high-throughput devices, making them harder to virtualize than CPUs
● Hypervisor must control memory access, command queues, and scheduling on the GPU
● Common approaches:

○ Device passthrough: a VM gets exclusive access to a physical GPU
○ Mediated / shared GPUs: hardware and drivers partition GPU resources across VMs

● Modern platforms rely on vendor support:
○ NVIDIA: vGPU, MIG (hardware-level partitioning)
○ AMD: SR-IOV–based GPU virtualization

● Trade-off space:
○ Passthrough -> near-native performance, weaker consolidation
○ Shared GPUs -> higher utilization, stronger isolation requirements

● GPU virtualization is critical for AI, ML, and graphics workloads in the cloud

20



Nvidia vGPU

21https://developer.nvidia.com/blog/nvidia-vgpu-19-0-enables-graphics-and-ai-virtualization-on-nvidia-blackwell-gpus



Isolation Guarantees in Virtual Machines
● CPU: time-sliced execution with enforced boundaries
● Memory: address space separation via hardware paging
● Devices: controlled access through hypervisor mediation
● Stronger isolation than process-level models

22



Virtualization and Consolidation
● Multiple workloads share one physical host
● Improves cost efficiency and energy utilization
● Enables elastic provisioning in cloud environments
● Supports overcommitment with managed risk

23



Virtualization as a Cloud Enabler
● VMs are portable across identical hypervisor stacks
● Failure of one VM does not affect others
● Enables rapid provisioning and teardown
● Sets the stage for containers and serverless models

24



Preview: Beyond Basic Virtualization
● VM management and deployment workflows 
● Performance and isolation trade-offs
● Comparison with containers and other models
● Virtualization as one layer in a broader compute stack

25


