Hardware
Virtualization
Principles

What Is Virtualization?

e Virtualization allows multiple isolated operating systems to run on a single
physical machine

e Each VM behaves as if it has dedicated hardware

e Enabled by a software layer called a hypervisor

e Core goal: isolation + efficient resource sharing

Why Virtualization Matters

e Improves hardware utilization through consolidation

e Enables workload portability across machines and data centers
e Provides fault isolation between workloads

e Foundation for modern cloud computing platforms

The Role of the Hypervisor

e Hypervisor mediates access to CPU, memory, and devices

e Presents virtual hardware abstractions to guest operating systems
e Enforces isolation boundaries between VMs

e Schedules and multiplexes physical resources

Hypervisors vs. Traditional Operating Systems

o Traditional OS: manages hardware on behalf of user processes

e Hypervisor: manages hardware on behalf of entire operating systems

e OS assumes it is the sole owner of the machine

e Hypervisor must safely multiplex ownership across multiple guests

e Design priority shifts from fair process scheduling to strong isolation

e Minimalism: many hypervisors expose fewer services than general-purpose
OSes

e Security model treats guest OSes as untrusted workloads

Common Hypervisor Implementations

e Closed / Commercial Hypervisors
0 VMware ESXi
B Widely used in enterprise and private clouds
m Mature tooling, strong ecosystem, proprietary licensing
o Microsoft Hyper-V
m Integrated with Windows Server and Azure
o Common in Microsoft-centric enterprise environments
e Open-Source Hypervisors
o KVM (Kernel-based Virtual Machine)
B Built directly into the Linux kernel
m Foundation for many public clouds (via Linux-based stacks)

m Early cloud hypervisor with strong isolation model
m Historically used by large providers; still relevant in specialized contexts

Example: KVM

Host (Machine)

e QEMU is an emulator. - _— SR —_—
e Amarzingly, this setup can
still lead to near-native

performance.

Guest (VM) Guest (VM) Guest (VM)

Guest App Guest App Guest App

Guest Kernel Guest Kernel Guest Kernel

Host Kernel KVM Modules

Hardware

https://ubuntu.com/blog/kvm-hyphervisor

Hardware Requirements for Virtualization

e CPU must explicitly support guest vs. host execution modes
e Intel VT-x (VMX) and AMD-V (SVM) add hardware-managed virtualization states

e Sensitive and privileged instructions must trap automatically when executed by a

guest
e Hardware must provide controlled entry and exit between guest and hypervisor

e Memory subsystem must support nested address translation
o Intel: Extended Page Tables (EPT)

o AMD: Nested Page Tables (NPT / RVI)
e Interrupts, timers, and exceptions must be virtualizable without guest awareness

Privilege Rings and GPU Modes

e CPUs provide multiple privilege levels (rings)

e Traditional OS runs kernel in highest privilege level

e Virtualization introduces an additional control layer

e Hardware support (e.g., VMX/SVM) enables safe trapping

Where Does the Hypervisor Sit?

Fundamental design choice: does the hypervisor
run on bare hardware or on top of an OS?
Determines how hardware access, drivers, and
scheduling are handled
Affects performance, security boundaries, and
system complexity
Leads to two architectures:
o Bare-metal hypervisors (direct hardware
control)
o Hosted hypervisors (hypervisor as an
application)

TYPE 1

native TY P E 2

(bare metal) hosted

https://en.wikipedia.org/wiki/Hypervisor

10

Type 1 (Bare-Metal) Hypervisors

e Run directly on physical hardware

e No host operating system underneath

o Examples: enterprise and cloud hypervisors

e Advantages: performance, security, scalability

11

Type 2 (Hosted) Hypervisors

e Run on top of a general-purpose host OS

e Host OS manages hardware and device drivers
e Common in desktop and development use

e Easier to install, higher overhead

12

Comparing Type 1 vs. Type 2

e Type 1: production cloud, strong isolation, lower latency
e Type 2: development, testing, convenience-focused

e Difference is architectural, not just performance

e Cloud platforms almost exclusively use Type 1

13

What Hardware Resources Must Be Virtualized?

e CPU: execution state, privilege levels, and scheduling

e Memory: address spaces, isolation, and translation

e Storage: disks presented as virtual block devices

o Networking: virtual NICs, MAC/IP isolation, traffic control

e Devices: timers, interrupts, and I/O peripherals

e Hypervisor must virtualize each resource independently while preserving
the illusion of a full machine

e Weakness in any layer can compromise isolation or performance

14

Memory Virtualization: The Problem

e Guest OS assumes direct control over physical memory
e Multiple VMs must coexist without interference

e Hypervisor must translate guest memory addresses

e Requires an additional level of indirection

15

Page Tables: Why They Matter for Virtualization

Page tables map virtual addresses used by software to physical memory
locations
Modern OSes already rely on page tables for process isolation and protection
Virtualization adds an extra layer:

o Guest OS believes it manages “physical” memory

o Hypervisor must map guest-physical memory to real machine memory
This creates a two-level translation problem
Efficient memory virtualization depends on hardware-assisted paging support
Page tables are the foundation that makes memory isolation possible across
VMs

16

Shadow Page Tables and EPT

e Early approach: hypervisor-maintained shadow page tables
o High overhead due to frequent updates

e Modern CPUs support nested paging (EPT/NPT)
e Hardware-assisted memory translation reduces overhead

17

Device Virtualization and 1/0

e Physical devices cannot be safely shared directly
e Hypervisor exposes virtual devices to guests
e I/0 requests must be mediated or forwarded
e Often a major source of virtualization overhead

18

Paravirtualized 1/0

e Guest OS cooperates with the hypervisor

e Uses specialized drivers instead of emulated hardware
e Reduces context switches and emulation cost

e Common for network and storage devices

19

GPU Virtualization

GPUs are stateful, high-throughput devices, making them harder to virtualize than CPUs
Hypervisor must control memory access, command queues, and scheduling on the GPU
Common approaches:

o Device passthrough: a VM gets exclusive access to a physical GPU

o Mediated / shared GPUs: hardware and drivers partition GPU resources across VMs
Modern platforms rely on vendor support:

o NVIDIA: vGPU, MIG (hardware-level partitioning)

o AMBD: SR-IOV-based GPU virtualization
Trade-off space:

o0 Passthrough -> near-native performance, weaker consolidation

o0 Shared GPUs -> higher utilization, stronger isolation requirements
GPU virtualization is critical for AIl, ML, and graphics workloads in the cloud

20

Nvidia vGPU

Up to 48 VMs sharing a single RTX Pro 6000 Blackwell Server Edition with NVIDIA vGPU

6/ e/
&

a8
GG
o

(O &
(12
Tege
Tee 2

VM

VM

8
i

ar
[

~—\ /
P
> 8 0
\
©3

(

)

8
SR
),

{]
\

o /
{

Giae)
(@ 2]

VM

VM

w

Ao
o

OCCEI0)
e

M

=
o
Lo
>
=
@
Q
>
T

21

https://developer.nvidia.com/blog/nvidia-vgpu-19-0-enables-graphics-and-ai-virtualization-on-nvidia-blackwell-gpus

Isolation Guarantees in Virtual Machines

e CPU: time-sliced execution with enforced boundaries

e Memory: address space separation via hardware paging

e Devices: controlled access through hypervisor mediation
e Stronger isolation than process-level models

22

Virtualization and Gonsolidation

e Multiple workloads share one physical host

e Improves cost efficiency and energy utilization

e Enables elastic provisioning in cloud environments
e Supports overcommitment with managed risk

23

Virtualization as a Gloud Enabler

e VMs are portable across identical hypervisor stacks
e Failure of one VM does not affect others

e Enables rapid provisioning and teardown

e Sets the stage for containers and serverless models

24

Preview: Beyond Basic Virtualization

e VM management and deployment workflows

o Performance and isolation trade-offs

e Comparison with containers and other models

e Virtualization as one layer in a broader compute stack

25

