Linux System
Administration
Basics

Linux as an
Operating System

" THECATHOLIC UNIVERSITY OF AMERICA

What Linux Is (and Is Not)

e Linuxisa kernel, not a complete operating system by itself
e The kernel manages hardware resources: CPU, memory, devices, and

processes
e A usable system combines the Linux kernel with user-space tools and libraries

Kernel vs User Space

e Kernel space: privileged code that directly controls hardware

o User space: applications, shells, system utilities, services

e Strict separation improves stability and security

e System calls are the controlled interface between user programs and the kernel

Distributions (Distros)

e A distribution packages the kernel with:
o System libraries (e.g., C standard library)
o Core utilities
o Package manager and repositories
o Default configuration and policies
o Examples differ in:
o Release cadence (stable vs rolling)
o Target audience (desktop, server, embedded)
o Administrative defaults

Package Ecosystems

e Software is installed primarily through package managers

e Packages are built, signed, and distributed by the distro

e Dependency management is handled automatically

e This model emphasizes reproducibility and centralized updates

Why Linux Is Dominant in Infrastructure

e Designed from the start for multi-user, networked systems
e Strong support for automation and scripting

e Predictable behavior across machines and environments

e Scales from small virtual machines to supercomputers

Common Deployment Gontexts

e Cloud virtual machines and bare-metal servers

e Containers and container orchestration platforms
e Scientific computing and HPC clusters

e Embedded and appliance-style systems

Philosophy Relevant to Administration

]
e “Everything is a file” abstraction
e Small tools composed together
® Text-based configuration and logs
® Preference for explicit configuration over hidden state

The Linux Filesystem
HEHI

" THECATHOLIC UNIVERSITY OF AMERICA

Linux Filesystem Model & Structure

e Single Unified Directory Tree
o Linux uses one root directory (/)
o All files, devices, and storage are accessible under this tree
o No drive letters (unlike Windows)
e Everything Is a File (Conceptually)
o Regular files, directories, devices, and interfaces share a common abstraction
o Enables uniform tools for inspection and management
o Encourages composability and scripting
e Mounting
o Storage devices and network filesystems are mounted into the tree
o External disks, cloud volumes, and virtual filesystems appear as directories
o Location matters for performance, persistence, and security

Key Directories and Their Purpose

e Core System Locations
o / — Root of the filesystem
o /bin, /sbin — Essential system binaries
o /lib, /1ib64 — Shared system libraries
e Configuration and State

o /etc — System-wide configuration files (text-based)

o /var — Variable data: logs, caches, queues, databases

o /tmp — Temporary files (often cleared automatically)
e User Data

o /home — User home directories

o User files and personal configuration live here
o Separation simplifies backups and access control

Users, Groups, and
Permissions

" THECATHOLIC UNIVERSITY OF AMERICA

User Basics

e Multi-user by design: every process runs as a user

e Users and groups: groups define shared access

e Ownership: each file has an owner and a group

e Permissions: read (r), write (w), execute (x)

e Scopes: owner - group - others

e Principle: least privilege enables security and stability

The Shell

“mm T
e

ag

ECATHOLIC UNIVERSITY OF AMERICA

The Shell and Command Structure

e The shell is a command interpreter

e Reads aline of text and executes a program

e General form: command [options] [arguments]

e Programs signal success or failure with an exit status
o Text is the primary administrative interface

Commands

bash, zsh — common shells

whoami — show current user

echo "text" — print output

true, false — demonstrate exit status
command --help — quick option summary

Navigating the Filesystem

e [Each shell session has a current working directory

e Paths can be absolute (start with /) or relative

e Directory changes affect how commands interpret paths
e Predictable navigation enables scripting and automation

Commands

e pwd — show current directory

e 1s — list directory contents

e cd /path — change directory
e cd .. — move up one level

e cd ~ — goto home directory

Inspecting Files and Directories

e List directory contents and file details

e View file contents without modifying them

o File metadata includes size, timestamps, and permissions
e Inspection-first mindset avoids accidental changes

Commands

e 1s -1 — detailed listing

e 1s -a — include hidden files

e cat file — display file contents
e less file — paged file viewer

e stat file — detailed metadata

Input, Output, and Redirection

e Programs read from standard input

e Programs write to standard output and standard error
e Output can be redirected to files

e Pipes connect programs into processing chains

Commands

e > — redirect output (overwrite)

e >> — redirect output (append)

e < — redirect input

e | — pipe output to another command
e 2> — redirect error output

Getting Help and Discoverability

e Commands document themselves

e Manual pages describe options and behavior

e Help tools are safer than guessing

e Sysadmins read documentation as part of normal work

Commands

man command — full manual page

info command — structured documentation
command --help — brief usage

apropos keyword — search manuals
which command — locate executable

SSH and SCP

" THECATHOLIC UNIVERSITY OF AMERICA

What SSH Is and Why It Exists

e Secure remote login and command execution
e Encrypts traffic over untrusted networks

e Standard admin interface for Linux servers

e Replaced insecure tools (telnet, rsh)

Commands

]
e ssh user@host — open a secure remote shell
e Ssh host — connect using current username

e ssh -v user@host — verbose connection (debugging)

Authentication Methods

e Password authentication (simple, weaker)

e Public key authentication (preferred)

e Keys enable automation and stronger security

e Authentication determines who you are, not what you can do

Creating an SSH Key Pair (Client Side)

e Keys come in a pair: private key + public key

e The private key stays on your machine

e The public key is shared with the server

e Keys authenticate you, not a password

e Anyone with your private key can log in as you

Step 1 — Generate the Key Pair

e Use ssh-keygen to create a new key

e Choose a modern algorithm (default is fine)
e Select a file location (default recommended)
e Optional passphrase protects the private key

ssh-keygen

ssh-keygen -t ed25519

ssh-keygen -f ~/.ssh/id example

ssh-keygen -t ed25519 -C "your emailll@example.com"

Step 2 — Understand the Key Files

e Private key: stored locally (never copy or email)

e Public key: safe to share

e Keys are plain text files

e Permissions on the private key must be restrictive

* 1ls ~/.ssh/
* 1ls -1 ~/.ssh/id ed25519*
e cat ~/.ssh/id ed25519.pub

Step 3 — Install the Public Key on the Server

e Public key is added to the server’s user account
e Stored in ~/.ssh/authorized_keys

e Server checks this file during login

e Matching key grants access without a password

scp ~/.ssh/id ed25519.pub user@host:/tmp/
ssh user@host
mkdir -p ~/.ssh

ssh-copy-id user@host OR cat /tmp/id ed25519.pub >>
~/.ssh/authorized keys
chmod 700 ~/.ssh
chmod 600 ~/.ssh/authorized keys

better (to control which key is transferred):
ssh-copy-id -i ~/.ssh/id example.pub user@host

Authentication Requirements for ssh-copy-
id

e Password login must be enabled on the remote server
e You must already have permission to log in as user
e SSH must allow public-key authentication (default on most systems)

Step 4 — Log In Using the Key

e SSH automatically tries available keys

e No password prompt if key is accepted

e Passphrase may be requested locally

e Authentication is now cryptographic, not secret-based

ssh user@host
ssh -1 ~/.ssh/id ed25519 userlhost

Step 5 — Common Failure Modes (What to Check)

]
e Wrong user account on the server
e Incorrect file permissions
e Public key installed on the wrong machine
e Private key missing or inaccessible locally

Commands

e ssh user@host — password-based login (if enabled)

e ssh-keygen — generate a public/private key pair

e Ssh-copy-id user@host — install public key on server

e ssh -i keyfile user@host — use a specific private key

Remote Sessions and Commands

e Interactive remote shell sessions

e Commands can be run without logging in
e Local shell vs remote shell context matters
o Exit status propagates back to the client

Commands

]
e ssh user@host — interactive shell session
e ssh user@host "command" — run asingle remote command
e ssh user@host "uptime" — example: system status

e exit — end remote session

File Transfer with SCP

e Securely copy files over SSH

e Copy local » remote or remote — local

e Recursive directory transfers supported

o Paths are evaluated on the specified machine

Commands

e scp file user@host:/path/ — copylocal - remote

e sScp user@host:/path/file . — copyremote — local

e sScp -r dir user@host:/path/ — recursive directory copy
e scp —p file user@host:/path/ — preserve timestamps

Security and Operational Best Practices

e Verify host identity on first connection

e Avoid logging in as root

e Use least-privilege accounts

e SSH failures are usually configuration, not network errors

“mm T
e

ag

ECATHOLIC UNIVERSITY OF AMERICA

What tmux Is and Why It’s Used

GNU nano New Buffer Modified

e Terminal multiplexer: multiple terminals
in one - s my diary.

e Sessions persist after SSH disconnects _ B

e Standard tool for remote Linux
administration

e Prevents loss of long-running work

for a chat?

Commands C-b = Ctrl + b [@Ingifridh (+1i) 6:du/#sunshine (+nt)

tmux — start tmux
C-b ? — show all key bindings
C-b d — detach from tmux

Sessions

e A tmux server manages multiple sessions
e Sessions are independent workspaces

e Sessions can be named for clarity

e Attach and detach from sessions at will

tmux new -s name — create named session
tmux ls — list sessions

tmux attach -t name — attach to session
C-b d — detach from session

C-b $ — rename current session

Windows

Each session contains multiple windows
Windows act like virtual terminals
Typically one task per window

Fast switching improves workflow

c — create new window
n — next window

C-b

C-b

C-b p — previous window
C-b , — rename window
C-b & — close window

Panes

e Panes split a window into regions

e Multiple commands visible at once

o Useful for logs, monitors, and editors

e Layouts support operational awareness

C-b % — split vertically

C-b " — split horizontally

C-b o — move between panes
C-b x — close pane

C-b z — zoom/unzoom pane

Detach, Reattach, and Recovery

e Detaching leaves programs running

e Reattach from any terminal

e Network failures do not kill sessions

o Essential for unstable or remote connections

C-b d — detach safely

tmux attach — reattach to last session

tmux attach -t name — reattach to specific session
C-b : — enter tmux command prompt

