
Linux System 
Administration 
Basics



Linux as an 
Operating System

2



What Linux Is (and Is Not)
● Linux is a kernel, not a complete operating system by itself
● The kernel manages hardware resources: CPU, memory, devices, and 

processes
● A usable system combines the Linux kernel with user-space tools and libraries



Kernel vs User Space
● Kernel space: privileged code that directly controls hardware
● User space: applications, shells, system utilities, services
● Strict separation improves stability and security
● System calls are the controlled interface between user programs and the kernel



Distributions (Distros)
● A distribution packages the kernel with:

○ System libraries (e.g., C standard library)
○ Core utilities
○ Package manager and repositories
○ Default configuration and policies

● Examples differ in:
○ Release cadence (stable vs rolling)
○ Target audience (desktop, server, embedded)
○ Administrative defaults



Package Ecosystems
● Software is installed primarily through package managers
● Packages are built, signed, and distributed by the distro
● Dependency management is handled automatically
● This model emphasizes reproducibility and centralized updates



Why Linux Is Dominant in Infrastructure
● Designed from the start for multi-user, networked systems
● Strong support for automation and scripting
● Predictable behavior across machines and environments
● Scales from small virtual machines to supercomputers



Common Deployment Contexts
● Cloud virtual machines and bare-metal servers
● Containers and container orchestration platforms
● Scientific computing and HPC clusters
● Embedded and appliance-style systems



Philosophy Relevant to Administration
● “Everything is a file” abstraction
● Small tools composed together
● Text-based configuration and logs
● Preference for explicit configuration over hidden state



The Linux Filesystem 
Hierarchy



Linux Filesystem Model & Structure
● Single Unified Directory Tree

○ Linux uses one root directory (/)
○ All files, devices, and storage are accessible under this tree
○ No drive letters (unlike Windows)

● Everything Is a File (Conceptually)
○ Regular files, directories, devices, and interfaces share a common abstraction
○ Enables uniform tools for inspection and management
○ Encourages composability and scripting

● Mounting
○ Storage devices and network filesystems are mounted into the tree
○ External disks, cloud volumes, and virtual filesystems appear as directories
○ Location matters for performance, persistence, and security



Key Directories and Their Purpose
● Core System Locations

○ / — Root of the filesystem
○ /bin, /sbin — Essential system binaries
○ /lib, /lib64 — Shared system libraries

● Configuration and State
○ /etc — System-wide configuration files (text-based)
○ /var — Variable data: logs, caches, queues, databases
○ /tmp — Temporary files (often cleared automatically)

● User Data
○ /home — User home directories
○ User files and personal configuration live here
○ Separation simplifies backups and access control



Users, Groups, and 
Permissions



User Basics
● Multi-user by design: every process runs as a user
● Users and groups: groups define shared access
● Ownership: each file has an owner and a group
● Permissions: read (r), write (w), execute (x)
● Scopes: owner · group · others
● Principle: least privilege enables security and stability



The Shell



The Shell and Command Structure
● The shell is a command interpreter
● Reads a line of text and executes a program
● General form: command [options] [arguments]
● Programs signal success or failure with an exit status
● Text is the primary administrative interface



Commands
● bash, zsh — common shells
● whoami — show current user
● echo "text" — print output
● true, false — demonstrate exit status
● command --help — quick option summary



Navigating the Filesystem
● Each shell session has a current working directory
● Paths can be absolute (start with /) or relative
● Directory changes affect how commands interpret paths
● Predictable navigation enables scripting and automation



Commands
● pwd — show current directory
● ls — list directory contents
● cd /path — change directory
● cd .. — move up one level
● cd ~ — go to home directory



Inspecting Files and Directories
● List directory contents and file details
● View file contents without modifying them
● File metadata includes size, timestamps, and permissions
● Inspection-first mindset avoids accidental changes



Commands
● ls -l — detailed listing
● ls -a — include hidden files
● cat file — display file contents
● less file — paged file viewer
● stat file — detailed metadata



Input, Output, and Redirection
● Programs read from standard input
● Programs write to standard output and standard error
● Output can be redirected to files
● Pipes connect programs into processing chains



Commands
● > — redirect output (overwrite)
● >> — redirect output (append)
● < — redirect input
● | — pipe output to another command
● 2> — redirect error output



Getting Help and Discoverability
● Commands document themselves
● Manual pages describe options and behavior
● Help tools are safer than guessing
● Sysadmins read documentation as part of normal work



Commands
● man command — full manual page
● info command — structured documentation
● command --help — brief usage
● apropos keyword — search manuals
● which command — locate executable



SSH and SCP



What SSH Is and Why It Exists
● Secure remote login and command execution
● Encrypts traffic over untrusted networks
● Standard admin interface for Linux servers
● Replaced insecure tools (telnet, rsh)



Commands
● ssh user@host — open a secure remote shell
● ssh host — connect using current username
● ssh -v user@host — verbose connection (debugging)



Authentication Methods
● Password authentication (simple, weaker)
● Public key authentication (preferred)
● Keys enable automation and stronger security
● Authentication determines who you are, not what you can do



Creating an SSH Key Pair (Client Side)
● Keys come in a pair: private key + public key
● The private key stays on your machine
● The public key is shared with the server
● Keys authenticate you, not a password
● Anyone with your private key can log in as you



Step 1 — Generate the Key Pair
● Use ssh-keygen to create a new key
● Choose a modern algorithm (default is fine)
● Select a file location (default recommended)
● Optional passphrase protects the private key

• ssh-keygen
• ssh-keygen -t ed25519
• ssh-keygen -f ~/.ssh/id_example
• ssh-keygen -t ed25519 -C "your_email@example.com"



Step 2 — Understand the Key Files
● Private key: stored locally (never copy or email)
● Public key: safe to share
● Keys are plain text files
● Permissions on the private key must be restrictive

• ls ~/.ssh/
• ls -l ~/.ssh/id_ed25519*
• cat ~/.ssh/id_ed25519.pub



Step 3 — Install the Public Key on the Server
● Public key is added to the server’s user account
● Stored in ~/.ssh/authorized_keys
● Server checks this file during login
● Matching key grants access without a password

ssh-copy-id user@host

scp ~/.ssh/id_ed25519.pub user@host:/tmp/
ssh user@host
mkdir -p ~/.ssh
cat /tmp/id_ed25519.pub >> 
~/.ssh/authorized_keys
chmod 700 ~/.ssh
chmod 600 ~/.ssh/authorized_keys

OR

ssh-copy-id -i ~/.ssh/id_example.pub user@host
better (to control which key is transferred):



Authentication Requirements for ssh-copy-
id

● Password login must be enabled on the remote server
● You must already have permission to log in as user
● SSH must allow public-key authentication (default on most systems)



Step 4 — Log In Using the Key
● SSH automatically tries available keys
● No password prompt if key is accepted
● Passphrase may be requested locally
● Authentication is now cryptographic, not secret-based

• ssh user@host
• ssh -i ~/.ssh/id_ed25519 user@host



Step 5 — Common Failure Modes (What to Check)
● Wrong user account on the server
● Incorrect file permissions
● Public key installed on the wrong machine
● Private key missing or inaccessible locally



Commands
● ssh user@host — password-based login (if enabled)
● ssh-keygen — generate a public/private key pair
● ssh-copy-id user@host — install public key on server
● ssh -i keyfile user@host — use a specific private key



Remote Sessions and Commands
● Interactive remote shell sessions
● Commands can be run without logging in
● Local shell vs remote shell context matters
● Exit status propagates back to the client



Commands
● ssh user@host — interactive shell session
● ssh user@host "command" — run a single remote command
● ssh user@host "uptime" — example: system status
● exit — end remote session



File Transfer with SCP
● Securely copy files over SSH
● Copy local → remote or remote → local
● Recursive directory transfers supported
● Paths are evaluated on the specified machine



Commands
● scp file user@host:/path/ — copy local → remote
● scp user@host:/path/file . — copy remote → local
● scp -r dir user@host:/path/ — recursive directory copy
● scp -p file user@host:/path/ — preserve timestamps



Security and Operational Best Practices
● Verify host identity on first connection
● Avoid logging in as root
● Use least-privilege accounts
● SSH failures are usually configuration, not network errors



tmux



What tmux Is and Why It’s Used
● Terminal multiplexer: multiple terminals 

in one
● Sessions persist after SSH disconnects
● Standard tool for remote Linux 

administration
● Prevents loss of long-running work

tmux — start tmux
C-b ? — show all key bindings
C-b d — detach from tmux

Commands C-b = Ctrl + b



Sessions
● A tmux server manages multiple sessions
● Sessions are independent workspaces
● Sessions can be named for clarity
● Attach and detach from sessions at will

tmux new -s name — create named session
tmux ls — list sessions
tmux attach -t name — attach to session
C-b d — detach from session
C-b $ — rename current session



Windows
● Each session contains multiple windows
● Windows act like virtual terminals
● Typically one task per window
● Fast switching improves workflow

C-b c — create new window
C-b n — next window
C-b p — previous window
C-b , — rename window
C-b & — close window



Panes
● Panes split a window into regions
● Multiple commands visible at once
● Useful for logs, monitors, and editors
● Layouts support operational awareness

C-b % — split vertically
C-b " — split horizontally
C-b o — move between panes
C-b x — close pane
C-b z — zoom/unzoom pane



Detach, Reattach, and Recovery
● Detaching leaves programs running
● Reattach from any terminal
● Network failures do not kill sessions
● Essential for unstable or remote connections

C-b d — detach safely
tmux attach — reattach to last session
tmux attach -t name — reattach to specific session
C-b : — enter tmux command prompt


